Skip to main content

Advertisement

Log in

Gratkorn: A benchmark locality for the continental Sarmatian s.str. of the Central Paratethys

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This paper presents one of the richest and most complete vertebrate faunas of the late Middle Miocene (~12 Ma) of Central Europe. Up to now, sixty-two vertebrate taxa, comprising all major groups (fishes, amphibians, reptiles, birds, mammals), have been recorded. Based on sedimentological and palaeobiological evidences, this Fossillagerstätte is assumed to originate from a floodplain paleosol formed on top of a braided river sequence. The fauna points to a highly structured, somewhat vegetated landscape with a wide array of habitats (e.g., fluvial channels, sporadically moist floodplains, short-lived ponds, savannah-like open areas and screes). It was preserved due to a rapid drowning and the switch to a freshwater lake environment. Palaeoclimatological data, derived from pedogenic features as well as from biota, indicate an overall semi-arid, subtropical climate with distinct seasonality (mean annual precipitation 486 ± 252 mm, mean annual temperature ~15°C). This underlines the late Middle/early Late Miocene dry-spell in Central Europe. From taphonomical point of view, the irregularly distributed but roughly associated larger vertebrate remains refer to an in situ accumulation of the bone bed. Splintered bones, gnawing marks as well as rhizoconcretions and root corrosion structures record some pre- and post-burial modification of the taphocoenose. However, the findings of pellet remains argue for a very fast burial and thus to a low degree of time-averaging. For this reason, the fossil fauna reflects the original vertebrate community rather well and is a cornerstone for the understanding of late Middle Miocene terrestrial ecosystems in this region. Certainly, Gratkorn will be one of the key faunas for a high-resolution continental biostratigraphy and the comprehension of Europe’s faunal interchanges near the Middle/Late Miocene transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar JP, Berggren WA, Aubry M-P, Kent DV, Clauzon G, Benammi M, Michaux J (2004) Mid-Neogene Mediterranean marine-continental correlations: an alternative interpretation. Palaeogeogr Palaeoclimatol Palaeoecol 204:165–186

    Google Scholar 

  • Andrews PJ (1990) Owls, caves and fossils. Nat Hist Mus Publ, London

    Google Scholar 

  • Bao H, Koch PL, Hepple RP (1998) Hematite and calcite coatings on fossil vertebrates. J Sed Res 68:727–738

    Google Scholar 

  • Behrensmeyer AK (1978) Taphonomic and ecologic information from bone weathering. Paleobiol 4:150–162

    Google Scholar 

  • Behrensmeyer AK (1991) Terrestrial vertebrate accumulations. In: Allison PA, Briggs DE (eds) Taphonomy: releasing the data locked in the fossil record. Plenum, New York, pp 291–335

    Google Scholar 

  • Berger W, Zabusch F (1953) Die obermiozäne (sarmatische) Flora der Türkenschanze in Wien. N Jb Geol Paläont Abh 98:226–261

    Google Scholar 

  • Bernor RL, Kordos L, Rook L et al (2004) Recent advances on multidisciplinary research at Rudabánya, Late Miocene (MN9), Hungary: a compendium. Palaeontogr Italica 89:3–36

    Google Scholar 

  • Bertoni-Machado C, Holz M (2006) Biogenetic fossil concentration in fluvial settings: an example of cynodont taphocoenosis from the Middle Triassic of southern Brazil. Rev Bras Paleont 9:273–282

    Google Scholar 

  • Bhatia SB, Soulié-Märsche I, Gemayel P (1998) Late Pliocene and early Pleistocene charophyte flora of the Hirpur Formation, Karexa Group, Kashmir, India. N Jb Geol Paläont Abh 210:185–209

    Google Scholar 

  • Böhme M (2001) The oldest representative of a brown frog (Salientia, Ranidae) from the Lower Miocene of Germany and the ecology of this group during the Neogene. Acta Palaeont Polonica 46:119–124

    Google Scholar 

  • Böhme M (2003) The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401

    Google Scholar 

  • Böhme M (2010) Ectothermic vertebrates (Osteichthyes, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria): their implication for environmental reconstruction and palaeoclimate. Paläont Z 84:3–41

    Google Scholar 

  • Böhme M, Ilg A, Ossig A, Küchenhoff H (2006) New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology 34:425–428

    Google Scholar 

  • Böhme M, Ilg A, Winklhofer M (2008) Late Miocene “washhouse” climate in Europe. Earth Planet Sci Lett 275:393–401

    Google Scholar 

  • Böhme M, Abdul Aziz H, Bachtadse V, Prieto J, Rocholl A, Ulbig A, Wijbrans JR (2009) A new small-mammal biostratigraphy and high-resolution chronostratigraphic model for the Upper Freshwater Molasse of the eastern part of the North Alpine Foreland Basin (Bavaria, Germany). Geophys Res Abstr 11, EGU2009-0

  • Brewer R (1976) Fabric and mineral analysis of soils, 2nd edn. Krieger, New York

    Google Scholar 

  • Cicha I, Seneš J, Tejkal J (eds) (1967) M3 (Karpatien)—Die Karpatisches Serie und ihr Stratotypus. Chronostratigr Neostratotypen 1:1–312

  • Coombs MC (2009) The chalicothere Metaschizotherium bavaricum (Perissodactyla, Chalicotheriidae, Schizotheriinae) from the Miocene (MN5) Lagerstätte of Sandelzhausen (Germany): description, comparison, and paleoecological significance. Paläont Z 83:85–129

    Google Scholar 

  • Costeur L, Legendre S, Aguilar J-P, Lécuyer C (2007) Marine and continental synchronous climatic record: towards a revision of the European Mid-Miocene mammalian biochronological framework. Geobios 40:775–784

    Google Scholar 

  • Daxner-Höck G (1996) Faunenwandel im Obermiozän und Korrelation der MN-“Zonen” mit den Biozonen des Pannons der zentralen Paratethys. Beitr Paläont 21:1–9

    Google Scholar 

  • Daxner-Höck G (1998) Wirbeltiere aus dem Unter-Miozän des Lignit-Tagebaues Oberdorf (Weststeirisches Becken, Österreich). 7. Rodentia 2 und Lagomorpha (Mammalia). Ann Naturhist Mus Wien 99A:139–162

    Google Scholar 

  • Daxner-Höck G (2004) Biber und ein Zwerghamster aus Mataschen (Unter-Pannonium, Steirisches Becken). Joannea Geol Paläont 5:19–33

    Google Scholar 

  • Daxner-Höck G (2010) Sciuridae, Gliridae and Eomyidae (Rodentia, Mammalia) from the Middle Miocene of St. Stefan in the Gratkorn Basin (Styria, Austria). Ann Naturhist Mus Wien 112A:507–536

    Google Scholar 

  • Daxner-Höck G, Bernor RL (2009) The early Vallesian vertebrates of Atzelsdorf (Late Miocene, Austria). 8. Anchitherium, Suidae and Castoridae (Mammalia). Ann Naturhist Mus Wien 111A:557–584

    Google Scholar 

  • Daxner-Höck G, Göhlich UB (2009) The early Vallesian vertebrates of Atzelsdorf (Late Miocene, Austria). 1. Introduction. Ann NaturhistMus Wien 111A:475–478

    Google Scholar 

  • De Bruijn H (2009) The Eumyarion (Mammalia, Rodentia, Muridae) assemblage from Sandelzhausen (Miocene, Southern Germany): a test on homogeneity. Paläont Z 83:77–83

    Google Scholar 

  • De Bruijn H, Daams R, Daxner-Höck G, Fahlbusch V, Ginsburg L, Mein P, Morales J (1992) Report of the RCMNS working group on fossil mammals, Reisenburg 1990. Newslett Stratigr 26:65–118

    Google Scholar 

  • Denys C, Fernández-Jalo Y, Dauphin Y (1995) Experimental taphonomy: preliminary results of the digestion of micromammal bones in the laboratory. Compt Rend Acad Sci Paris 321:803–809

    Google Scholar 

  • Doukas CS (1986) The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece). Proc Kon Nederl Akad Wet B89:15–38

    Google Scholar 

  • Ebner F, Sachsenhofer RF (1991) Die Entwicklungsgeschichte des Steirischen Tertiärbeckens. Mitt Abt Geol Paläont Landesmus Joanneum 49:1–96

    Google Scholar 

  • Engel MS, Gross M (2009) A giant termite from the Late Miocene of Styria, Austria (Isoptera). Naturwissenschaften 96:289–295

    Google Scholar 

  • Engesser B (1980) Insectivora and Chiroptera (Mammalia) aus dem Neogen der Türkei. Schweiz Paläont Abh 102:45–149

    Google Scholar 

  • Erdei B, Hably L, Kázmer M, Utescher T, Bruch AA (2007) Neogene flora and vegetation development of the Pannonian domain in relation to palaeoclimate and palaeogeography. Palaeogeogr Palaeoclimatol Palaeoecol 253:115–140

    Google Scholar 

  • Fejfar O, Kaiser TM (2005) Insect bone-modification and paleoecology of Oligocene mammal-bearing sites in the Doupov Mountains, Northwestern Bohemia. Palaeont Electronica 8:11

    Google Scholar 

  • Flügel HW (1997) Bericht 1996 über die lithostratigraphische Gliederung des Miozäns auf Blatt 164 Graz. Jb Geol Bundesanst 140:383–386

    Google Scholar 

  • Gentry AW, Rössner GE, Heizmann EP (1999) Suborder Ruminantia. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Pfeil, München, pp 225–258

    Google Scholar 

  • Gross M (2003) Beitrag zur Lithostratigraphie des Oststeirischen Beckens (Neogen/Pannonium; Österreich). Oesterr Akad Wiss, Schriftenr Erdwiss Komm 16:11–62

    Google Scholar 

  • Gross M (2008) A limnic ostracod fauna from the surroundings of the Central Paratethys (Late Middle Miocene/Early Late Miocene; Styrian Basin; Austria). Palaeogeogr Palaeoclimatol Palaeoecol 264:263–276

    Google Scholar 

  • Gross M, Fritz I, Piller WE, Soliman A, Harzhauser M, Hubmann B, Moser B, Scholger R, Suttner TJ, Bojar H-P (2007a) The Neogene of the Styrian Basin—guide to excursions. Joannea Geol Paläont 9:117–193

    Google Scholar 

  • Gross M, Harzhauser M, Mandic O, Piller WE, Rögl F (2007b) A Stratigraphic Enigma: the age of the Neogene deposits of Graz (Styrian Basin; Austria). Joannea Geol Paläont 9:195–220

    Google Scholar 

  • Haas JN (1994) First identification key of charophyte oospores from Central Europe. Eur J Phycolo 29:227–235

    Google Scholar 

  • Hably L (1992) Distribution of legumes in the Tertiary of Hungary. In: Herendeen PS, Dilcher DL (eds) Advances in legume systematics. The Royal Botanic Gardens, Kew, pp 169–187

    Google Scholar 

  • Haller-Probst M (1997) Die Verbreitung der Reptilia in den Klimazonen der Erde. Cour Forsch-Inst Senckenberg 203:1–67

    Google Scholar 

  • Handler R, Ebner F, Neubauer F, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from the Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpathica 57:483–494

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea level changes. In: Wilgus CK, Hastings BS, Kendall C, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level changes—an integrated approach, vol. 42. SEPM Spec Publ, pp 71–108

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, Graciansky P-C, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In: Graciansky CP, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European Basins, vol. 60. SEPM Spec Publ, pp 3–13

  • Harzhauser M, Piller WE (2004) Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy 1:65–86

    Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Google Scholar 

  • Harzhauser M, Piller WE, Latal C (2007) Geodynamic impact on the stable isotope signatures in a shallow epicontinental sea. Terra Nova 19:1–7

    Google Scholar 

  • Harzhauser M, Gross M, Binder H (2008) Biostratigraphy of Middle Miocene (Sarmatian) wetland systems in an Eastern Alpine intramontane basin (Gratkorn Basin, Austria): the terrestrial gastropod approach. Geol Carpathica 59:45–58

    Google Scholar 

  • Heissig K (1999) Family Rhinocerotidae. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Pfeil, München, pp 175–188

    Google Scholar 

  • Heissig K (2009) The early Vallesian vertebrates of Atzelsdorf (Late Miocene, Austria). 11. Rhinocerotidae and Chalicotheriidae (Perissodactyla). Ann Naturhist Mus Wien 111A:619–634

    Google Scholar 

  • Heizmann EPJ, Reiff W (2002) Der Steinheimer Meteorkrater. Pfeil, München

    Google Scholar 

  • Hillenbrand V, Göhlich UB, Rössner GE (2009) The early Vallesian vertebrates of Atzelsdorf (late Miocene, Austria). 7. Ruminantia. Ann Naturhist Mus Wien 111A:519–556

    Google Scholar 

  • Hír J (2004) The Present Status of the Study on the Middle Miocene Rodent Faunas in the Carpathian Basin. Cour Forsch-Inst Senckenberg 249:45–52

    Google Scholar 

  • Hír J (2006) Late Astaracian (Late Sarmatian) Lagomorphs and Rodents from Felsőtárkány-Felnémet (Northern Hungary). Beitr Paläont 30:155–173

    Google Scholar 

  • Hüsing SK, Hilgen FJ, Abdul Aziz H, Krijgsman W (2007) Completing the Neogene geological time scale between 8.5 and 12.5 Ma. Earth Planet Sci Lett 253:340–358

    Google Scholar 

  • Jiménez-Moreno G, Rodríguez-Tovar FJ, Pardo-Igúzquiza E, Fauquette S, Suc J-P, Müller P (2005) High-resolution palynological analysis in the late early-middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuation in the Central Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 216:73–97

    Google Scholar 

  • Jiříček R, Riha J (1991) Correlation of Ostracod Zones in the Paratethys and Tethys. Proc Shallow Tethys 3:435–457

    Google Scholar 

  • Kaiser TM (2009) Anchitherium aurelianense (Equidae, Mammalia): a brachydont “dirty browser” in the community of herbivorous large mammals from Sandelzhausen (Miocene, Germany). Paläont Z 83:131–140

    Google Scholar 

  • Kälin D (1999) Tribe Cricetini. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Pfeil, München, pp 373–387

    Google Scholar 

  • Kälin D, Engesser B (2001) Die jungmiozäne Säugetierfauna vom Nebelbergweg bei Nunningen (Kanton Solothurn, Schweiz). Schweiz Paläont Abh 121:1–61

    Google Scholar 

  • Klaus S, Gross M (2010) Synopsis of the fossil freshwater crabs of Europe (Brachyura: Potamoidea: Potamidae). N Jb Geol Paläont Abh 256:39–59

    Google Scholar 

  • Klembara J, Böhme M, Rummel M (2010) Revision of the Anguine Lizard Pseudopus laurillardi (Squamata, Anguidae) from the Miocene of Europe. J Paleont 84:159–196

    Google Scholar 

  • Kollmann K (1965) Jungtertiär im Steirischen Becken. Mitt Geol Ges Wien 57:479–632

    Google Scholar 

  • Kosi W, Sachsenhofer RF, Schreilechner M (2003) High resolution sequence stratigraphy of upper Sarmatian and Pannonian units in the Styrian Basin, Austria. Österr Akad Wiss, Schr-R Erdwiss Komm 16:63–86

    Google Scholar 

  • Kováč M, Baráth I, Harzhauser M, Hlavatý I, Hudáčková N (2004) Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour Forsch-Inst Senckenberg 246:187–212

    Google Scholar 

  • Kováč M, Baráth I, Fordinál K, Grigorovich AS, Halásova E, Hudáčková N, Joniak P, Sabol M, Slamková M, Sliva L, Vojtko R (2006) Late Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine-Carpathian-Pannonian junction area: A case study from the Danube Basin northern margin (Slovakia). Palaeogeogr Palaeoclimatol Palaeoecol 238:32–52

    Google Scholar 

  • Kováč M, Sliva L, Sopková B, Hlavatá J, Škulová A (2008) Serravallian sequence stratigraphy of the northern Vienna Basin: high frequency cycles in the Sarmatian sedimentary record. Geol Carpathica 59:545–561

    Google Scholar 

  • Lirer F, Harzhauser M, Pelosi N, Piller WE, Schmid HP, Sprovieri M (2009) Astronomical forced teleconnection between Paratethyan and Mediterranean sediments during the Middle and Late Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 275:1–13

    Google Scholar 

  • Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geological time scale 2004. Cambridge University Press, Cambridge, pp 409–440

    Google Scholar 

  • Matthews T (2002) South African micromammals and predators: some comparative results. Archaeom 44:363–370

    Google Scholar 

  • Mayhew DF (1977) Avian predators as accumulators of fossil mammal material. Boreas 6:25–31

    Google Scholar 

  • Mein P (1999) European Miocene mammal biochronology. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Pfeil, München, pp 25–38

    Google Scholar 

  • Meller B, Gross M (2006) An important piece of a stratigraphic puzzle? Podocarpium podocarpum (A. Braun) Herendeen from the Styrian Basin (Miocene). In: Tessadri-Wackerle M (ed) Pangeo Austria 2006. Innsbruck Univ Press, Conf ser, Innsbruck, pp 194–195

    Google Scholar 

  • Merceron G (2009) The early Vallesian vertebrates of Atzelsdorf (Late Miocene, Austria). 13. Dental wear patterns of herbivorous ungulates as ecological indicators. Ann Naturhist Mus Wien 111A:647–660

    Google Scholar 

  • Miall AD (1996) The geology of fluvial deposits. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • Mikuláš R, Kadlecová E, Fejfar O, Dvořák Z (2006) Three new ichnogenera of biting and gnawing traces on reptilian and mammalian bones: a case study from the Miocene of the Czech Republic. Ichnos 13:113–127

    Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. PNAS 102:14964–14969

    Google Scholar 

  • Moser B (1997) Untersuchung junger Rotationen in der tertiären Überlagerung des Grazer Paläozoikums im nördlichen Bereich von Graz. Thesis, University of Leoben

  • Mottl M (1964) Dorcatherium aus dem unteren Sarmat von St. Stefan im Lavanttal. Carinthia II 154:22–24

    Google Scholar 

  • Mottl M (1970) Die jungtertiären Säugetierfaunen der Steiermark, Südost-Österreichs. Mitt Mus Bergbau Geol Techn Landesmus Joanneum Graz 31:3–92

    Google Scholar 

  • Müller MJ, Hennings D (2009) The global climate data atlas, climate 1. http://www.climate-one.de. Accessed July 2009

  • Nargolwalla MC, Hutchison MP, Begun DR (2006) Middle and Late Miocene Terrestrial Vertebrate Localities and Paleoenvironments in the Pannonian Basin. Beitr Paläont 30:347–360

    Google Scholar 

  • Papp A (1951) Das Pannon des Wiener Beckens. Mitt Geol Ges Wien 39–41:99–193

    Google Scholar 

  • Papp A (1956) Fazies und Gliederung des Sarmats im Wiener Becken. Mitt Geol Ges Wien 47:1–97

    Google Scholar 

  • Papp A, Thenius E (1954) Vösendorf—ein Lebensbild aus dem Pannon des Wiener Beckens. Mitt Geol Ges Wien 46:1–108

    Google Scholar 

  • Papp A, Marinescu F, Seneš J (1974) M5 Sarmatien (sensu E. SUESS, 1866). Chronostratigr Neostratotypen, Miozän Zentr Paratethys 4:1–707

    Google Scholar 

  • Piller WE, Harzhauser M (2005) The myth of the brackish Sarmatian Sea. Terra Nova 17:450–455

    Google Scholar 

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168

    Google Scholar 

  • Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M (2004) Lithological-Paleogeographic maps of Paratethys. Cour Forsch-Inst Senckenberg 250:1–46

    Google Scholar 

  • Prieto J (2007) Kleinsäuger-Biostratigraphie und Paläoökologie des höheren Mittelmiozäns (MN 8) Bayerns: Spaltenfüllungen der Fränkischen Alb und Lokalitäten der Oberen Süßwassermolasse im Vergleich. Dissertation, University of Munich

  • Prieto J (2010) The Middle Miocene mole Desmanodon crocheti sp. nov. (Talpidae, Mammalia): the last representative of the genus in the North Alpine foreland basin. Paläont Z 84:217–225

    Google Scholar 

  • Prieto J, Böhme M, Maurer H, Heissig K, Abdul Aziz H (2009) Biostratigraphy and sedimentology of the Fluviatile Untere Serie (Early and Middle Miocene) in the central part of the North Alpine Foreland Basin: implications for palaeoenvironment and climate. Int J Earth Sci 98:1767–1791

    Google Scholar 

  • Prieto J, Gross M, Böhmer C, Böhme M (2010a) Insectivores and bat (Mammalia) from the late Middle Miocene of Gratkorn (Austria): biostratigraphic and ecologic implications. N Jb Geol Paläont Abh 258:107–119

    Google Scholar 

  • Prieto J, Böhme M, Gross M (2010b) The cricetid rodent fauna from Gratkorn (Austria, Styria): a cornerstone for the understanding of the late Middle Miocene (Sarmatian s. str.) continental biostratigraphy in the Central Paratethys. Geol Carpathica 61:419–436

    Google Scholar 

  • Prieto J, Angelone C, Gross M (submitted) The pika Prolagus (Ochotonidae, Lagomorpha, Mammalia) in the Late Middle Miocene fauna from Gratkorn (Styrian Basin, Austria). Joannea Geol Paläont 11

  • Retallack GJ (1997) A colour guide to paleosols. Wiley, Chichester

    Google Scholar 

  • Retallack GJ (2001) Soils of the Past. An introduction to paleopedology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Rögl F (1998) Palaeogeographic Considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99A:279–310

    Google Scholar 

  • Sabol M, Holec P (2002) Temporal and Spatial Distribution of Miocene Mammals in the Western Carpathians (Slovakia). Geol Carpathica 53:269–279

    Google Scholar 

  • Sacchi M, Horvath F (2002) Towards a new time scale for the Upper Miocene continental series of the Pannonian basin (Central Paratethys). EGU Stephan Mueller Spec Publ Ser 3:79–94

    Google Scholar 

  • Schmid W (2002) Ablagerungsmilieu, Verwitterung und Paläoböden feinklastischer Sedimente der Oberen Süßwassermolasse Bayerns. Bayer Akad Wiss Math-Naturwiss Kl Abh NF 172:1–247

    Google Scholar 

  • Schreilechner MG, Sachsenhofer RF (2007) High Resolution Sequence Stratigraphy in the Eastern Styrian Basin (Miocene, Austria). Austrian J Earth Sci 100:164–184

    Google Scholar 

  • Shoshani J, Eisenberg JF (1982) Elephas maximus. Mamm Species 182:1–8

    Google Scholar 

  • Staesche K (1931) Die Schildkröten des Steinheimer Beckens. A. Testudinidae. Palaeontogr Suppl 8A:1–17

    Google Scholar 

  • Stefen C (2009) The beaver (Mammalia, Castoridae) from the Miocene of Sandelzhausen (southern Germany). Paläont Z 83:183–186

    Google Scholar 

  • Steininger FF (ed) (1998) The Early Miocene Lignite Deposit of Oberdorf N Voitsberg (Styria, Austria). Jb Geol Bundesanst 140:395–655

  • Steininger FF (1999) The continental European Miocene. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Pfeil, München, pp 9–24

    Google Scholar 

  • Steininger FF, Berggren WA, Kent DV, Bernor RL, Sen S, Agusti J (1996) Circum-mediterranean Neogene (Miocene and Pliocene) marine-continental chronologic correlations of European mammal Units. In: Bernor RL, Fahlbusch V, Mittmann H-W (eds) The evolution of Western Eurasian Neogene mammal faunas. Columbia University Press, New York, pp 7–46

    Google Scholar 

  • Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol Carpathica 57:185–197

    Google Scholar 

  • Tempfer PM (2009) The early Vallesian vertebrates of Atzelsdorf (late Miocene, Austria). 3. Squamata, Scleroglossa. Ann Naturhist Mus Wien 111A:489–498

    Google Scholar 

  • Terry RC (2007) Inferring predator identity from skeletal damage of small-mammal prey remains. Evol Ecol Res 2007:199–219

    Google Scholar 

  • Thenius E (1955) Zur Entwicklung der Jungtertiären Säugetierfaunen des Wiener Beckens. Paläont Z 29:21–26

    Google Scholar 

  • Thenius E (1960) Die jungtertiären Wirbeltierfaunen und Landfloren des Wiener Beckens und ihre Bedeutung für die Neogenstratigraphie. Mitt Geol Ges Wien 52:203–209

    Google Scholar 

  • Thenius E (1982) Ein Menschenaffenfund (Primates: Pongidae) aus dem Pannon (Jung-Miozän) von Niederösterreich. Folia Primatol 39:187–200

    Google Scholar 

  • Turnbull WD, Martill DM (1988) Taphonomy and preservation of a monospecific Titanothere assemblage from the Washakie formation (Late Eocene), southern Wyoming. An ecological accident in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 63:91–108

    Google Scholar 

  • Tütken T, Vennemann T (2009) Stable isotope ecology of Miocene large Mammals from Sandelzhausen, southern Germany. Paläont Z 83:207–226

    Google Scholar 

  • Van Dam JA, Alcalá L, Alonzo Zarsa A, Calvo JP, Garcés M, Krijgsman W (2001) The Upper Miocene mammal record from the Teruel-Alfambra region (Spain). The MN system and continental stage/age concepts discussed. J Vert Paleont 21:367–385

    Google Scholar 

  • Van den Hoek Ostende LW (2001) Insectivore faunas from the lower Miocene of Anatolia—part 8: Stratigraphy, palaeoecology, palaeobiogeography. Scr Geol 122:101–122

    Google Scholar 

  • Van der Made J (2003) Suoidea (pigs) from the Miocene hominoid locality Çandir in Turkey. Cour Forsch-Inst Senckenberg 240:149–180

    Google Scholar 

  • Van der Meulen AJ, De Bruijn H (1982) The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece). Part 2. The Gliridae. Proc Kon Nederl Akad Wet B85:485–524

    Google Scholar 

  • Vangengeim EA, Tesakov AS (2008) Late Sarmatian Mammal Localities of the Eastern Paratethys: Stratigraphic Position, Magnetochronology, and Correlation with the European Continental Scale. Stratigr Geol Correl 16:92–103

    Google Scholar 

  • Venczel M, Ştiucă E (2008) Late middle Miocene amphibians and squamate reptiles from Tauţ, Romania. Geodiversitas 30:731–763

    Google Scholar 

  • Vislobokova I (2005) The importance of Late Miocene faunal exchanges between Eastern Mediterranean areas and Central Europe. Ann Paléont 91:241–255

    Google Scholar 

  • Wessels W, Reumer BM (2009) Democricetodon and Megacricetodon (Mammalia, Cricetidae) from the Miocene of Sandelzhausen, Southern Germany. Paläont Z 83:187–205

    Google Scholar 

  • Winkler A (1927) Über die sarmatischen und pontischen Ablagerungen im Südostteil des steirischen Beckens. Jb Geol Bundesanst 77:393–456

    Google Scholar 

  • Winkler-Hermaden A (1957) Geologisches Kräftespiel und Landformung. Springer, Wien

    Google Scholar 

  • Woodburne MO (2009) The early Vallesian vertebrates of Atzelsdorf (Late Miocene, Austria). 9. Hippotherium (Mammalia, Equidae). Ann Naturhist Mus Wien 111A:585–604

    Google Scholar 

Download references

Acknowledgments

We are grateful to Gudrun Daxner-Höck, Ursula Göhlich (both Vienna), Kurt Heissig, Bettina Reichenbacher, Gertrud Rössner (all Munich) and Jan van der Made (Madrid) for their comments to the rodent, ruminants, proboscidean and bird remains. For earlier discussions, we are indebted to Mathias Harzhauser (Vienna), Sebastian Klaus (Frankfurt/Main), Barbara Meller (Vienna), Robert Scholger (Leoben) and Petra Maria Tempfer (St. Andrä-Wördern). This work benefited from the reviews of Mathias Harzhauser and Lars van den Hoek Ostende (Leiden). Helmut W. Flügel (Graz) initiated this project by conducting a mapping campaign in this area, which was generously supported by the Geological Survey of Austria (Hans Georg Krenmayr). For partial funding of the excavations and access to the pit, we thank the Land Steiermark (Wissenschaftsreferat), the community of Gratkorn (especially the late major Elmar Fandl) and the Wietersdorfer & Peggauer Zementwerke AG (Josef Plank), respectively. Gerald Philipp, Gernot Tonauer, Manuel Kapeller (all Graz) and two groups of students from the university of Munich assisted substantially during the fieldwork. Many thanks go to Norbert Winkler (Graz) for the excellent preparation of vertebrate remains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, M., Böhme, M. & Prieto, J. Gratkorn: A benchmark locality for the continental Sarmatian s.str. of the Central Paratethys. Int J Earth Sci (Geol Rundsch) 100, 1895–1913 (2011). https://doi.org/10.1007/s00531-010-0615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0615-1

Keywords

Navigation