Skip to main content
Log in

Biotite and muscovite 40Ar–39Ar geochronological constraints on the post-Svecofennian tectonothermal evolution, Forsmark site, central Sweden

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In order to characterize the post-Svecofennian tectonothermal evolution of the Fennoscandian Shield, 40Ar–39Ar biotite and some 40Ar–39Ar muscovite geochronological data are reported from a total of 30 surface outcrop and 1,000 m long borehole samples at Forsmark, central Sweden. The 13 surface samples were collected across 3 branches of a major WNW to NW trending system of deformation zones, whereas the boreholes were drilled within a tectonic lens, in between two of these zones. The 40Ar–39Ar biotite ages indicate that the present erosion surface, in central Sweden, cooled below c. 300°C at 1.73–1.66 Ga, and that the rocks could have accommodated strain in a brittle manner between 1.8 and 1.7 Ga. The variation in surface ages is suggested to be due to fault along the large WNW to NW trending deformation zones, following the establishment of a sub-Cambrian peneplain. The minor variation of ages within a single crustal block may be due to disturbance along ENE to NNE trending fracture zones. Possible cooling paths, derived from 40Ar–39Ar hornblende, muscovite and biotite ages, were calculated for the time interval from 1.80 to 1.67 Ga, when the area cooled from c. 500 to 300°C. Cooling rates of 1.9–4°C/m.y. have been attained. Between 1.68 and 1.64 Ga, uplift rates of c. 22 m/m.y. were calculated from borehole 40Ar–39Ar biotite data. Tectonothermal histories, inferred from the combined cooling and uplift rates, are related to simple cooling after the Svecofennian orogeny, to crustal movement in response to far-field effects of c. 1.7 Ga orogenic activities further to the west or to a combination of these possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahl M, Andersson UB, Lundqvist T, Sundblad K (2004a) The Dala granitoids. In: Högdahl K, Andersson UB, Eklund O (eds), The Transscandinavian igneous belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37:70–74

  • Ahl M, Gorbatschev R, Sundblad K (2004b) The Rätan Batholith. In: Högdahl K, Andersson UB, Eklund O (eds), The Transscandinavian igneous belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37:75–76

  • Andersson UB, Sjöström H, Högdahl K, Eklund O (2004) The Transscandinavian igneous belt, evolutionary models. In: Högdahl K, Andersson UB, Eklund O (eds), The Transscandinavian igneous belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37:104–112

  • Andersson UB, Högdahl K, Sjöström H, Bergman S (2006) Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geol Mag 143:679–697. doi:10.1017/S0016756806002494

    Article  Google Scholar 

  • Bergman T, Johansson R, Lindén AH, Rudmark L, Stephens MB, Isaksson H et al (1999) Förstudie Tierp. Jordarter, bergarter och deformationszoner. Swedish Nuclear Fuel and Waste Management Company, Stockholm, SKB R-99-53

  • Bergman S, Sjöström H, Högdahl K (2006) Transpressive shear related to arc magmatism: The Paleoproterozoic Storsjön-Edsbyn Deformation Zone, central Sweden. Tectonics 25:TC(1004). doi:10.1029/2005TC001815

  • Beunk FF, Page LM (2001) Structural evolution of the accretional continental margin of the Palaeoproterozoic Svecofennian orogen in southern Sweden. Tectonophysics 339:67–92. doi:10.1016/S0040-1951(01)00034-8

    Article  Google Scholar 

  • Blanckenburg F, Villa IM, Baur H, Morteani G, Steiger RH (1989) Time calibration of a PT-path from the Western Tauern Window, Eastern Alps: the problem of closure temperatures. Contrib Mineral Petrol 101:1–11

    Article  Google Scholar 

  • Dalrymple GB, Lanphere MA (1971) 40Ar/39Ar technique of K–Ar dating: a comparison with the conventional technique. Earth Planet Sci Lett 12:300–308

    Article  Google Scholar 

  • Dunlap WJ (1997) Neocrystallization or cooling? 40Ar/39Ar of white micas from lowgrade mylonites. Chem Geol 143:181–203

    Article  Google Scholar 

  • Harrison TM, Duncan I, McDougall I (1985) Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochem Cosmochem Acta 55:1435–1448

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Andersson J, Page L (2007) Penetrative ductile deformation and amphibolite-facies metamorphism prior to (1851) Ma in the western part of the Svecofennian orogen, Fennoscandian Shield. Precambrian Res 153:29–45

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Page LM, Andersson J (2008a) Migratory tectonic switching, western Svecofennian orogen, central Sweden—constraints from U/Pb zircon and titanite geochronology. Precambrian Res 161:250–278

    Article  Google Scholar 

  • Hermansson T, Page LM, Stephens MB (2008b) 40Ar/39Ar hornblende geochronology from the Forsmark area in central Sweden—constraints on late Svecofennian ductile deformation and exhumation. Precambrian Res (in press)

  • Hodges KV (1991) Pressure-temperature-time paths. Annu Rev Earth Planet Sci 19:207–236

    Article  Google Scholar 

  • Högdahl K (2000) Late-orogenic, ductile shear zones and protolith ages in the Svecofennian domain, central Sweden. Meddelanden från Stockholm Universitets Institution för Geologi och Geokemi 309:21 (doctoral thesis)

  • Högdahl K, Sjöström H (2001) Evidence for 1.82 Ga transpressive shearing in a 1.85 Ga granitoid in central Sweden: implications for the regional evolution. Precambrian Res 105:37–56

    Article  Google Scholar 

  • Högdahl K, Sjöström H, Bergman S (1995) Geochronology and tectonic evolution of the Hagsta gneiss zone, east central Sweden. In: Kohonen T, Lindberg B (eds), Abstract, The 22nd Nordic geological winter meeting, Åbo, Finland, pp 73

  • Högdahl K, Gromet PL, Sjöström H (2001) Character and timing of Svecokarelian, late-orogenic, ductile deformation zones in Jämtland, west central Sweden. GFF 123:225–236

    Article  Google Scholar 

  • Juhlin C, Stephens MB (2006) Gently dipping fracture zones in Paleoproterozoic metagranite, Sweden: evidence from reflection seismic and cored borehole data and implications for the disposal of nuclear waste. J Geophys Res 111, B09302, pp 19

    Google Scholar 

  • Kohn MJ, Spear FS, Harrison TM, Dalziel IWD (1995) 40Ar-39Ar geochronology and P-T-t paths from the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. J Metamorph Geol 13:251–270

    Article  Google Scholar 

  • Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerström M, Korhonen J (2001) Geological map of the Fennoscandian Shield, scale 1:2000000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia

  • Lidmar-Bergström K (1996) Long term morphotectonic evolution in Sweden. Geomorphology 16:35–59

    Google Scholar 

  • McDougall I, Harrison TM (1988) Geochronology and thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York, p 212

    Google Scholar 

  • Nordgulen Ø, Saintot A (2006) Forsmark site investigation. The character and kinematics of deformation zones (ductile shear zones, fault zones and fracture zones) at Forsmark––report from phase 1. Swedish Nuclear Fuel and Waste Management Company, Stockholm, SKB P-06–212

  • Nyström J-O (2004) Dala volcanism, sedimentation and structural setting. In: Högdahl K, Andersson UB, Eklund O (eds) The Transscandinavian igneous belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37:58–70

  • Page L, Hermansson T, Söderlund P, Stephens MB (2007) 40Ar/39Ar and (U-Th)/He geochronology: phase 2. Swedish Nuclear and Fuel Waste Management Company, Stockholm, SKB P-06-211

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owena TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152

    Article  Google Scholar 

  • Sandström B, Page L, Tullborg E-L (2006) Forsmark site investigation. 40Ar/39Ar (adularia) and Rb-Sr (adularia, prehnite, calcite) ages of fracture minerals. Swedish Nuclear Fuel and Waste Management Company, Stockholm, SKB P-06-213

  • Sjöström H, Bergman S (1998) Svecofennian metamorphic and tectonic evolution of east central Sweden. Geological Survey of Sweden, research project report, pp 50

  • SKB (2000) Samlad redovisning av metod, platsval och program inför platsundersökningsskedet. Swedish Nuclear Fuel and Waste Management Company, Stockholm, pp 257

  • SKB (2005) Preliminary site description. Forsmark area—version 1.2. Swedish Nuclear Fuel and Waste Management Company, Stockholm, SKB R-05-18

  • Stephens MB, Lundqvist S, Bergman T, Andersson J, Ekström M (2003) Bedrock mapping. Rock types, their petrographic and geochemical characteristics, and a structural analysis of the bedrock based on Stage 1 (2002) surface data. Forsmark site investigation. Swedish Nuclear Fuel and Waste Management Company, Stockholm, SKB P-03-75

  • Wijbrans JR, Pringle MS, Koppers AAP, Scheveers R (1995) Argon geochronology of small samples using the Vulkaan argon laserprobe. Proc Koninklijke Nederlandse Akademie Wetenschappen 98:185–218

    Google Scholar 

Download references

Acknowledgments

Jan Wijbrans and Bernard Bingen are thanked for valuable comments on the manuscript. We are also grateful to Ulf Söderlund who kindly commented on an early version of the manuscript. We greatly appreciate the assistance provided by the personnel at the SKB drill-core facilities who helped to supply the selected samples from boreholes. The project was funded by the Swedish Nuclear Fuel and Waste Management Company (SKB) and Lund University. All SKB company reports, referred to in the text, can be downloaded from the SKB website (www.skb.se).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Söderlund.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderlund, P., Hermansson, T., Page, L.M. et al. Biotite and muscovite 40Ar–39Ar geochronological constraints on the post-Svecofennian tectonothermal evolution, Forsmark site, central Sweden. Int J Earth Sci (Geol Rundsch) 98, 1835–1851 (2009). https://doi.org/10.1007/s00531-008-0346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0346-8

Keywords

Navigation