Skip to main content
Log in

Neogene magmatism and its possible causal relationship with hydrocarbon generation in SW Colombia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Cretaceous oil-bearing source and reservoir sedimentary succession in the Putumayo Basin, SW Colombia, was intruded by gabbroic dykes and sills. The petrological and geochemical character of the magmatic rocks shows calc-alkaline tendency, pointing to a subduction-related magmatic event. K/Ar dating of amphibole indicates a Late Miocene to Pliocene age (6.1 ± 0.7 Ma) for the igneous episode in the basin. Therefore, we assume the intrusions to be part of the Andean magmatism of the Northern Volcanic Zone (NVZ). The age of the intrusions has significant tectonic and economic implications because it coincides with two regional events: (1) the late Miocene/Pliocene Andean orogenic uplift of most of the sub-Andean regions in Peru, Ecuador and Colombia and (2) a pulse of hydrocarbon generation and expulsion that has reached the gas window. High La/Yb, K/Nb and La/Nb ratios, and the obtained Sr–Nd–Pb isotopic compositions suggest the involvement of subducted sediments and/or the assimilation of oceanic crust of the subducting slab. We discuss the possibility that magma chamber(s) west of the basin, below the Cordillera, did increase the heat flow in the basin causing generation and expulsion of hydrocarbons and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cardenas JI, Nuñez A, Fúquen JA (2002) Memoria explicativa plancha 388 Pitalito. Ingeominas

  • Chen Z, Yan H, Li J, Ge Z, Zhang Z, Liu B (1999) Relationship between Tertiary volcanic rocks and hydrocarbons in the Liaohe Basin, People’s Republic of China. AAPG Bull 83:1004–1014

    Google Scholar 

  • Córdoba F, Buchelli F, Moros J, Calderón W, Guerrero C, Kairuz EC, Magoon L (1997) Proyecto evaluación regional Cuenca del Putumayo—Definición de los sistemas petrolíferos. ECOPETROL, Bogotá

    Google Scholar 

  • Dulski P (1994) Interferences of oxide, hydroxide, and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem 350:194–203

    Article  Google Scholar 

  • Fuhrmann U, Lippolt HJ, Hess JC (1987) Examination of some proposed K-Ar standards: 40Ar/39Ar analyses and conventional K-Ar-Data. Chem Geol 66:41–51

    Google Scholar 

  • Gonçalves FTT, Mora CA, Cordoba F, Kairuz EC, Giraldo BN (2002) Petroleum generation and migration in the Putumayo Basin, Colombia: insights from an organic geochemistry and basin modeling study in the foothills. Mar Petrol Geol 19:711–725

    Article  Google Scholar 

  • Gutscher M-A, Malavieille J, Lallemand S, Collot J-Y (1999) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168:255–270

    Article  Google Scholar 

  • Hawkesworth CJ, Hammill M, Gledhill AR, Van Calsteren P, Rogers G (1982) Isotope and trace element evidence for late-stage intra-crustal melting in the high Andes. Earth Planet Sci Lett 58:240–254

    Article  Google Scholar 

  • Heinrichs H, Herrmann AG (1990) Praktikum der analytischen Geochemie. Springer, NY

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34–41°S): trace element and isotopic evidence for contributions from subducted oceanic crust. J Geophys Res 91:5963–5983

    Article  Google Scholar 

  • Higley DK (2000) The Putumayo-oriente-maranon province of Colombia, Ecuador, and Peru, Mesozoic-Cenozoic and Paleozoic petroleum systems U. S. Geological Survey Digital Data Series. Denver, Colorado, pp 35

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Jaffey AH, Flynn KF, Glendeni LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of U-235 and U-238. Phys Rev C 4:1889

    Article  Google Scholar 

  • James DE (1982) A combined O, Sr, Nd and Pb isotopic and trace element study of crustal contamination in central Andean lavas. Earth Planet Sci Lett 57:47–62

    Article  Google Scholar 

  • Kairuz EC (1993) Origen del CO2 en la Cuenca del Putumayo y su riesgo exploratorio asociado. VI Congreso Colombiano de Geología. Medellín, Colombia, pp 210–214

    Google Scholar 

  • Kontorovich AE, Khomenko AV, Burshtein LM, Likhanov II, Pavlov AL, Staroseltsev VS, Ten AA (1997) Intense basic magmatism in the Tunguska petroleum basin, eastern Siberia, Russia. Petrol Geosci 3:359

    Google Scholar 

  • Kroonenberg SB, León LA, Pastrana MR, Pessoa MR (1981) lgnimbritas plio-pleistocénicas en el sureste del Huila, Colombia, y su influencia en el desarrollo morfológico. Memoria Primer Seminario Cuaternario Colombia. Revista CIAF 6:293–314

    Google Scholar 

  • Kroonenberg SB, Pichler H, Diederix H (1982) Cenozoic alkalibasaltic to ultrabasic volcanism in the uppermost Magdalena Valley, Southern Huila Department, Colombia. Geol Norandina 5:19–26

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo YZ (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canad Mineral 35:219–246

    Google Scholar 

  • Lucassen F, Escayola M, Franz G, Romer RL, Koch K (2002) Isotopic composition of Late Mesozoic basic and ultrabasic rocks from the Andes (23–32°S)—implications for the Andean mantle. Contrib Mineral Petrol 143:336–349

    Article  Google Scholar 

  • Lucassen F, Franz G, Viramonte J, Romer RL, Dulski P, Lang A (2005) The late Cretaceous lithospheric mantle beneath the Central Andes: evidence from phase equilibria and composition of mantle xenoliths. Lithos 82:379–406

    Article  Google Scholar 

  • Manhès G, Minster JF, Allegre CJ (1978) Comparative uranium-thorium-lead and rubidium-strontium study of Saint-Severin amphoterite—consequences for early solar-system chronology. Earth Planet Sci Lett 39:14–24

    Article  Google Scholar 

  • Manjarres G, Nicholls E (1958) Obsidiana en el municipio de Sotará, Departamento del Cauca. Ingeominas

  • Mathalone JMP, Montoya RM (1995) Petroleum geology of the sub-Andean basins of Peru. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum basins of South America, American Association of Petroleum Geologist, Tulsa, pp 423–444

  • Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Murcia LA, Marin P (1981) Petrología y petroquímica en lavas recientes de algunos volcanes en Colombia. Memoria Primer Seminario Cuaternario. Revista CIAF 6:349–363

    Google Scholar 

  • Nuñez-Tello A (2003) Reconocimineto geológico regional de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco, Departamentos de Caquetá, Cauca, Huila, Nariño y Putumayo. Ingeominas

  • Pindell JL, Tabbutt KD (1995) Mesozoic-Cenozoic Anden paleogeography and regional controls on hydrocarbon systems. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum basins of South America, American Association of Petroleum Geologist, Tulsa, pp 101–128

  • Polyanskii OP, Reverdatto VV, Sverdlova VG (2002) Convection of two-phase fluid in a layered porous medium driven by the heat of magmatic dikes and sills. Geochem Int 40:S69–S81

    Google Scholar 

  • Schumacher E (1975) Herstellung von 99.9997% 38Ar für die K/40Ar Geochronologie. Geochron Chimia 24:441–442

    Google Scholar 

  • Sébrier M, Soler P (1991) Tectonics and magmatism in the Peruvian Andes from Late Oligocene time to the present. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geological Society of America, Boulder, pp, 259–278

  • Steiger RH, Jager E (1977) Subcommission on geochronology—convention on use of decay constants in geochronology and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Streckeisen AL (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Article  Google Scholar 

  • Thorpe RS, Francis PW (1979) Variations in Andean andesite compositions and their petrogenetic significance. Tectonophysics 57:53–70

    Article  Google Scholar 

  • Thorpe RS, Francis PW, O’Callaghan L (1984) Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philos Trans R Soc Lond A310:675–692

    Google Scholar 

  • Van der Hammen T (1958) Estratigrafia del Terciario y Maestrichtiano continentales y tectogénesis de los Andes Colombianos. Bol Geol 6:67–128

    Google Scholar 

  • Wemmer K (1991) K/Ar Altersdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden und duktilen Bereich—beispiele aus der KTB-Vorbohrung (Oberpfalz) und dem Bereich der Insubrischen Linie (N- Italien). Göttinger Arb Geol Paläont 51:1–61

    Google Scholar 

  • Wörner G, Moorbath S, Harmon RS (1992) Andean Cenozoic volcanic centers reflect basement isotopic domains. Geology 20:1103–1106

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Edgar Chajid Kairuz for his helpful information, Uwe Baaske and Andrea Knörich for their valuable comments on the manuscript, Ana Elena Concha for her help looking for samples and bibliography, and Ed Sobel for his corrections on the final manuscript. We are thankful to R. Neumann, P. Dulski, O. Appelt, B. Mocek and A. Musiol for the XRF, EMPA and ICP analyses, as well as to K. Wemmer of the University of Göttingen for the K–Ar age determination. We are deeply grateful to Ecopetrol S. A. and especially to the Instituto Colombiano del Petróleo and the Litoteca Nacional for permitting the publication of this study and to Alberto Ortíz, Andrés Reyes, and Mercedes Álvarez who very kindly permitted us to sample the well-cores and also to R. Oberhänsli and M. Strecker for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Vásquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vásquez, M., Altenberger, U. & Romer, R.L. Neogene magmatism and its possible causal relationship with hydrocarbon generation in SW Colombia. Int J Earth Sci (Geol Rundsch) 98, 1053–1062 (2009). https://doi.org/10.1007/s00531-008-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0303-6

Keywords

Navigation