Skip to main content
Log in

Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

High grade granitoid orthogneisses occur in several metamorphic units of the Erzgebirge in the Saxothuringian Zone of the Variscan Belt. The determination of protolith ages and the geochemical characterization of these rocks permit a reconstruction of the Neoproterozoic to early Palaeozoic magmatic and geodynamic history of the Erzgebirge. Single zircon Pb-Pb evaporation and SHRIMP ages combined with major and trace element data and Sm-Nd isotope systematics indicate at least two discrete magmatic events concealed in the so-called red gneisses, one at ~550 Ma in rocks of the medium pressure—medium temperature (MP-MT) unit and the other at ~500–480 Ma in rocks of the high pressure units. The transition zones comprise both Neoproterozoic granitoids and early Palaeozoic metarhyolites. The granitoid gneisses represent Neoproterozoic calc-alkaline granitoids with REE patterns similar to those produced in Andean-type continental margins. The early Palaeozoic muscovite gneisses are geochemically distinct from the older granitoids and may be derived from melts generated in a back-arc setting. Initial εNd values in all samples overlap and range from −4.1 to −9.2, corresponding to crustal sources with average residence times of 1.5 to 1.9 Ga. Zircon xenocryst ages as old as 2992 Ma provide evidence for Grenvillian, Svecofennian-Birimian-Aazonian and older age components and suggest an association of the Erzgebirge with Avalonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  • Arndt NT, Goldstein SL (1987) Use and abuse of crust-formation ages. Geology 15:893–895

    CAS  Google Scholar 

  • Bankwitz P, Bankwitz E, Kramer W, Pin C (1994) Early Palaeozoic bimodal volcanism in the Vesser Thuringian Forest, eastern Germany. Zbl Geol Paläont Teil I, 1113–1132

  • Catalán JRM, Arenas R, García FD, Pascual FJR, Abati J., Marquíí J (1996) Variscan exhumation of a subducted Paleozoic continental margin: The basal units of the Ordenes Complex, Galicia, NW Spain. Tectonics 15:106–121

    Article  Google Scholar 

  • Claoué-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analyses. Soc Sediment Geol Spec Publ 54:3-21

    Google Scholar 

  • Cocherie A, Guerrot C., Rossi P (1992) Single-zircon dating by step-wise Pb evaporation: comparison with other geochronological techniques applied to the Hercynian granites of Corsic, France. Chem Geol 101:131–141

    Article  CAS  Google Scholar 

  • Compston W, Williams IS, Kirschvink JL, Zhang Z., Ma G (1992) Zircon U-Pb ages for the early Cambrian time scale. J Geol Soc Lond 149:171–184

    CAS  Google Scholar 

  • Cooper AH, Millward D, Johnson EW., Soper NJ (1993) The early Palaeozoic evolution of northwest England. Geol Mag 130:711–724

    Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Unwin, London, 445 pp

  • De Laeter JR, Kennedy AK (1998) A double focusing mass spectrometer for geochronology. Int J Mass Spectrom 178:43–50

    Article  Google Scholar 

  • Evensen MN, Hamilton PJ, O‘Nions RK (1978) Rare-earth abundances in chondrite meteorites. Geochim Cosmochim Acta 42:1199–1212

    Article  CAS  Google Scholar 

  • Floyd PA, Winchester JA, Ciesielczuk J, Lewandowska A, Szczepanski J, Turniak K (1996) Geochemistry of early Palaeozoic amphibolites from the Orlica-Snieznik dome, Bohemian massif: petrogenesis of palaeotectonic aspects. Geol Rundschau 85:225–238

    Article  CAS  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90

    Google Scholar 

  • Franke W, Dallmeyer RD, Weber K (1995) Geodynamic evolution. In: Dallmeyer RD, Franke W, Weber K (eds.): Pre-Permian geology of central and eastern Europe. Springer-Verlag, Berlin, 579–593

  • Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate evolution. In: Franke W, Altherr R, Haak V, Oncken O, Tanner D (eds.) Orogenic processes — quantification and modelling in the Variscan belt of central Europe. Geol Soc Lond, Spec Publ 179:35–61

  • Furnes H, Kryza R, Muszynski A, Pin C, Garmann LB (1994) Geochemical evidence for progressive, rift related early Palaeozoic volcanism in the western Sudetes. J Geol Soc Lond 151:91–101

    CAS  Google Scholar 

  • Garbe-Schönberg CD (1993) Simultaneous determination of thirty-seven trace elements in twentyeight international rock standards by ICP-MS. Geostand Newsl 17:81–98

    Google Scholar 

  • Gehmlich M, Linnemann U, Tichomirowa M, Lützner H, Bombach K (1997) Datierung und Korrelation neoproterozoisch-frühpaläozoischer Profile des Schwarzburger Antiklinoriums und der Elbezone auf der Basis von geochronologischen Einzelzirkonen. Z geol Wiss 25:191–102

    CAS  Google Scholar 

  • Giese U, Bühn B (1993) Early Paleozoic rifting and bimodal volcanism in the Ossa-Morena Zone of south-west Spain. Geol Rundschau 83:143–160

    Google Scholar 

  • Govindaraju K, Potts PJ, Webb PC, Watson JS (1994) Report on Whin Sill dolerite WS-E from England and Pitscurrie microgabbro PM-S from Scotland. Geostand Newsl 18:211–300

    CAS  Google Scholar 

  • Hegner E, Watter HJ, Satir (1995) Pb-Sr-Nd isotopic compositions and trace element geochemistry of megacrysts and melililites from the Tertiary Urach volcanic field: source composition of small-volume melts under SW Germany. Contrib Mineral Petrol 122:322–335

    Article  CAS  Google Scholar 

  • Hegner E, Kröner A (2000) Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspastic reconstructions. In: Franke W, Altherr R, Haak V, Oncken O, Tanner D (eds.) Orogenic processes: quantification and modelling in the Variscan belt of central Europe. Geol Soc Lond Spec Publ 179:113–130

    CAS  Google Scholar 

  • Hoth K, Lorenz W, Berger HJ (1983) Die Lithostratigraphie des Proterozoikums im Erzgebirge. Z Angew Geol 29:413–418

    Google Scholar 

  • Jacobsen, St. B. and Wasserburg, G.J. (1980) Sm-Nd Isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  CAS  Google Scholar 

  • Jaeckel P, Kröner A, Kamo SL, Brandl G, Wendt JI (1997) Late Archaean to early Proterozoic granitoid magmatism and high-grade metamorphism in the central Limpopo belt, South Africa. J Geol Soc Lond 154:25–44

    CAS  Google Scholar 

  • Karabinos P (1997) An evaluation of the single-grain zircon evaporation method in highly discordant samples. Geochim Cosmochim Acta 61:2467–2474

    Article  CAS  Google Scholar 

  • Kemnitz H., Romer R.L., Oncken O(2002) Gondwana break-up and the northern margin of the Saxothuringian belt (Variscides of Central Europe). Int J Earth Sci (Geol. Rundschau) 91:246–259

    Google Scholar 

  • Kinny PD (1986) 3820 Ma zircons from a tonalitic Amitsoq gneiss in the Godthab district of southern West Greenland. Earth Planet Sci Lett 79:337–347

    Article  CAS  Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:482–490

    CAS  Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined with Pb+emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib Mineral Petrol 96:63–71

    CAS  Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh Sächs Geo Landesamt, Heft 1:3-39

  • Kotkova J, Kröner A, Todt W, Fiala J (1996) Lower Carboniferous HP event in the Bohemian Massif: evidence from North Bohemian granulites. Geol Rundsch 85:154–161

    Article  CAS  Google Scholar 

  • Kröner A, Wendt I, Liew TC, Fiala J, Compston W, Todt W, Vankova V, Vanek J (1988) U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99: 257–266

    Google Scholar 

  • Kröner A, Byerly GR, Lowe, DR (1991) Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth Planet Sci Lett 103:41–54

    Article  PubMed  Google Scholar 

  • Kröner A, Haase G, Bielecky KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics for Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundschau 83: 357-376

    Google Scholar 

  • Kröner A, Willner AP, Hegner E, Frischbutter A, Hofmann J, Bergner R (1995) Latest Precambrian (Cadomian) zircon ages, Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. Geol Rundschau 84: 437–456

    Article  Google Scholar 

  • Kröner A, Willner AP (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132:1-20

    Article  Google Scholar 

  • Kröner A, Hegner E (1998) Geochemistry, single zircon ages and Sm-Nd systematics of granitoid rocks from the Góry Sowie (Owl) Mts., Polish West Sudetes: evidence for early Palaeozoic arc-related plutonism. J Geol Soc Lond 155:711–724

    Google Scholar 

  • Kröner A, Jaeckel P, Brandl G, Nemchin AA, Pidgeon RT (1999) Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo belt, southern Africa, and geodynamic significance. Precambrian Res 93:299–337

    Article  Google Scholar 

  • Kröner A, Stípská P, Schulmann K, Jaeckel P (2000) Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke W, Haak V, Oncken O, Tanner D (eds.) Orogenic processes: quantification and modelling in the Variscan belt of central Europe. Geol Soc Lond Spec Publ 179:175–198

    Google Scholar 

  • Krohe A (1996) Variscan tectonics of Central Europe: postaccretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388

    Article  Google Scholar 

  • Kryza R, Muszynski A, Turniak K, Zalasiewicz JA (1994) A lower Palaeozoic shallow water sequence in the eastern European Variscides (SW Poland): provenance and depositional history. Geol Rundschau 83:5-19

    Google Scholar 

  • Kryza R, Pin C. (2002) Mafic rocks in a deep-crustal segment of the Variszides (the Góry Sowie, SW Poland): evidence for crustal contamination in an extensional setting. Int J earth Sci (Geol Rundsch) 91:1017–1029

    Article  Google Scholar 

  • Kurze M, Lobst R, Mathé G (1980) Zur Problematik der Unterscheidung von Ortho- und Paragneisen im Erzgebirge. Z angew Geol 26:63–73

    CAS  Google Scholar 

  • Liew TC, Hofmann AW (1988). Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of central Europe. Indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 88:129–138

    Google Scholar 

  • Linnemann U., Buschmann B (1995). Die cadomische Diskordanz im Saxothuringikum (oberkambrische-tremadocische overlap-Sequenzen). Z geol Wiss 23:707–727

    Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach, K (2000) From Cadomian subduction to early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (central European Variscides, Germany). In: Franke W, Haak V, Oncken O, Tanner D (eds.) Orogenic processes: quantification and modelling in the Variscan belt of central Europe. Geol Soc Lond Spec Publ 179:131–153

    CAS  Google Scholar 

  • Linnemann U, Romer RL (2002) The Cadomian orogeny in Saxo-Thuringia, Germany. Geochemical and Nd-Sr-Pb isotopic characterisation of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64

    Article  CAS  Google Scholar 

  • Lobst R, Matthies J, Hoth K (1994). Zur Petrologie der Muskovitgneise (Gm-Gneise) in der Erzgebirgs-Nordrandzone. Z geol Wiss 22:513–525

    Google Scholar 

  • Lorenz W, Hoth K (1964) Die lithostratigraphische Gliederung des kristallinen Vorsilurs in der Fichtelgebirgisch-Erzgebirgischen Antiklinalzone. Geol Beih 44:44 pp

    Google Scholar 

  • Lorenz W, Hoth K (1990) Lithostratigraphie im Erzgebirge—Konzeption, Entwicklung, Probleme und Perspektiven. Abh Staatl Museum Mineral Geol Dresden 37:7-35

    Google Scholar 

  • Massonne HJ (1994) P-T evolution of eclogite lenses in the crystalline complex of the Erzgebirge, middle Europe: an example for high-pressure to ultrahigh-pressure metabasites incorporated into continental crust. Extended abstract, 1st Workshop on ultra-high-pressure metamorphism and tectonics. Standford Univ., School of Earth Sciences, pp. A29-A32

  • Massonne HJ (1999) A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution. Proceedings of the 7th int. Kimberlite Conf. Cape Town (1998): 533-539

    Google Scholar 

  • Massonne HJ (2001) first find of coesite in the ultrahigh-pressure metamorphic area of the central Erzgebirge, Germany. Eur J Mineral 13:565–570

    Article  CAS  Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  • Matte P (1998) Continental subduction and exhumation of HP rocks in Paleozoic belts: Uralides and Variscides. Special Issue Tectonics and General History of Phanerozoic orogens. Geol Soc Sweden (G.F.F.) 120:209–222

    Google Scholar 

  • Matte P. (2001) The Variscan collage and orogeny (480–290) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128

    Article  Google Scholar 

  • Miller CF, Mittlefehldt DW (1982) Depletion of light rare-earth elements in felsic magmas. Geology 10:129–133

    CAS  Google Scholar 

  • Mingram B (1996) Geochemische Signaturen der Metasedimente des erzgebirgischen Krustenstapels. Scientific Technical Report STR96/04:104 pp.

  • Mingram B, Rötzler K, Tichomirowa M, Haase G, Teufel S (1998) Early Palaeozoic rift-related magmatism and passive margin sediments preserved in HP-units of the Erzgebirge. Terra Nostra 98/2:105–107

    Google Scholar 

  • Mingram B (1998) The Erzgebirge, Germany—a subducted part of northern Gondwana: geochemical evidence for repetition of early Palaeozoic metasedimentary sequences in metamorphic thrust units. Geol Mag 135:785–801

    Article  CAS  Google Scholar 

  • Mingram B, Rötzler K (1999) Geochemische, petrologische und geochronologische Untersuchungen im Erzgebirgskristallin—Rekonstruktion eines Krustenstapels. Schriftenreihe Geol Wiss 9:80 pp.

    Google Scholar 

  • Nance RD, Murphy JB (1994) Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: Example from the Neoproterozoic Avalonian-Cadomian belt. Geology 22:617–620

    Google Scholar 

  • Nelson DR (1997) Compilation of SHRIMP U-Pb zircon geochronology data, 1996. Geol Surv Western Australia, Record 1997/2:189 pp.

  • Noblet C, Lefort JP (1990) Sedimentological evidence for a limited separation between Amorica and Gondwana during the early Ordovician. Geology 18:303–306

    Article  Google Scholar 

  • Pietzsch K (1954) Die Gneise des sächsischen Erzgebirges. Geologie 3:391–412

    Google Scholar 

  • Pietzsch K (1962) Die Geologie von Sachsen. VEB Dtsch Verl Wiss, Berlin: 870 pp

  • Pin C (1990) Variscan oceans: Ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177:215–227

    Article  Google Scholar 

  • Pin C, Marini F (1993) Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of southern Massiv Central, France. Lithos 29:177–196

    Article  CAS  Google Scholar 

  • Quadt A von, Gebauer D (1998) Evolution of eclogitic rocks in the Erzgebirge: A conventional and SHRIMP U-Pb zircon and Sm-Nd study. Acta Univ Carolinae, Geologica 42/2:324–325

    Google Scholar 

  • Rötzler, K. (1995) Die PT-Entwicklung der Metamorphite des Mittel- und Westerzgebirges. Scientific Technical Report STR95/14:220 pp.

  • Rötzler K, Schumacher R, Maresch VW, Willner AP (1998) Contrasts in the metamorphic evolution and exhumation history of different metapelite units in the Western Erzgebirge (Saxony, Germany), European J Mineral 10:261–280

  • Rötzler K, Mingram B (1998) Evolution and geotectonic significance of high-pressure metarodingites in the Erzgebirge; Germany. Acta Univ Carolinae, Geologica 42/2:326–327

    Google Scholar 

  • Scheumann KH (1932) Über die petrogenetische Ableitung der roten Erzgebirgsgneise. Tscherm Min Petrol Mitt 42:413–454

    Google Scholar 

  • Schmädicke E, Okrusch M, Schmidt W (1992) Eclogite facies rocks in the Saxonian Erzgebirge, Germany: high pressure metamorphism under contrasting P-T conditions. Contrib Mineral Petrol 110:226–241

    Google Scholar 

  • Schmädicke E, Mezger K, Cosca MA, Okrusch M (1995) Variscan Sm-Nd and Ar-Ar ages of eclogite-facies rocks from the Erzgebirge, Bohemian Massif. J Metam Geol 13:537–552

    Google Scholar 

  • Schmädicke E, Evans BW (1997) Garnet-bearing ultramafic rocks from the Erzgebirge, and their relation to other settings in the Bohemian Massif. Contrib Mineral Petrol 127:57–74

    Article  Google Scholar 

  • Sebastian U (1995) Die Strukturentwicklung des spätorogenen Erzgebirgsaufstieg in der Flöhazone – Ein weiterer Beitrag zur postkollisionalen Extension am Nordrand der Böhmischen Masse. Freib Forsch Hft C461:114 pp

    Google Scholar 

  • Siebel W, Schnurr WBW, Hahne K, Krämer B, Trumbull RB, van den Bogaard P, Emmermann R (2000) Geochemistry and isotope systematics of small-to medium-volume Neogene-Quarternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources. Chem Geol 171:213–237

    Article  Google Scholar 

  • Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision. Geol Soc Am, Spec Paper 364:263–280

    Google Scholar 

  • Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan fold belt: paleomagnetic and geological constraints. Geol Rundsch 86:585–598

    Article  Google Scholar 

  • Taylor SR, Mc Lennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications. 312 pp

    Article  Google Scholar 

  • Tichomirowa M, Belyatski BV, Berger HJ, Koch EA, Bombach K (1996) New Cadomian ages of magmatic zircons (U/Pb, Pb/Pb) of grey gneisses from the eastern Erzgebirge. Terra Nostra 96/2:183–186

    Google Scholar 

  • Tichomirowa M, Berger HJ, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Zircon ages of high-grade gneisses in the eastern Erzgebirge (central European Variscides) - constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332

    Article  CAS  Google Scholar 

  • Tichomirowa M (2003) Die Gneise des Erzgebirges – hochmetamorphe Äquivalente von neoproterozoisch-frühpaläozoischen Grauwacken und Granitoiden der Cadomiden. Freib Forsch Hft C495:222 pp

    Google Scholar 

  • Valverde-Vaquero P, Dunning, GR (2000) New U-Pb ages for Early Ordovician magmatism in Central Spain. J Geol Soc Lond 157:15–26.

    CAS  Google Scholar 

  • von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7-22

    Article  Google Scholar 

  • Werner O, Lippolt HJ (2000) White mica 40Ar/38Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication. Spec Publ Geo Soc London 179:323-336

    Google Scholar 

  • Wiedemann F (1965) Zum Kalium-Natrium-Haushalt im Kristallin des Erzgebirges. Freib Forsch Hft C192:72 pp

    Google Scholar 

  • Wiedemann R (1989): Gefügeanalytische Untersuchungen von Augengneisen im Gebiet von Ehrenfriedersdorf -Wolkenstein (DDR). Freib Forsch Hft C429:48–58

    Google Scholar 

  • Willner AP, Rötzler K, Maresch VW (1997) Pressure-temperature and fluid evolution of quartzo-feldspathic metamorphic rocks with a relic high-pressure, granulite-facies history from the central Erzgebirge (Saxony, Germany). J Petrol 38:307–336

    Article  CAS  Google Scholar 

  • Winchester JA, Floyd PA, Chocyk M, Horbowy K, Kozdroj W (1995) Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. J Geol Soc Lond 152:105–115

    CAS  Google Scholar 

  • Winchester JA Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  CAS  Google Scholar 

  • Zuleger E, Erzinger J (1988) Determination of REE and Y in silicate minerals with ICP-AES. Fresenius Z Anal Chem 332:140–143

    CAS  Google Scholar 

Download references

Acknowledgements

A.K. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) and the Geological Survey of the State of Saxony as well as laboratory facilities in the Max-Planck-Institut für Chemie in Mainz. Some zircon analyses were carried out on the Sensitive High Resolution Ion Microprobe mass spectrometer (SHRIMP II) operated by a consortium consisting of Curtin University of Technology, the Geological Survey of Western Australia and the University of Western Australia with the support of the Australian Research Council. We appreciate the advice of A. Kennedy and A.A. Nemchin during SHRIMP analysis and data reduction. B.M. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) and laboratory facilities of the GFZ. Thanks are due to R. Naumann, E. Kramer, H. Rothe and C. Schulz for chemical analysis and to K. Rötzler for continued cooperation and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mingram.

Additional information

B. Mingram and A. Kröner have shared senior authorship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingram, B., Kröner, A., Hegner, E. et al. Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. Int J Earth Sci (Geol Rundsch) 93, 706–727 (2004). https://doi.org/10.1007/s00531-004-0414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0414-7

Keywords

Navigation