Skip to main content
Log in

High-temperature rapid pyrometamorphism induced by a charcoal pit burning: The case of Ricetto, central Italy

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 13 July 2004

Abstract

Bulk chemistry and mineralogy of the peculiar rock of Ricetto (Carseolani Mts., Central Apennines, Italy) was studied to resolve its controversial origin: igneous dyke or anthropic product. This hybrid rock consists of a colorless, felsic component made up of glass plus quartz, and a brown, femic component made up of fans and spherulites of diopside, calcic plagioclase, wollastonite, and melilite. Textural relationships indicate very rapid cooling and immiscibility phenomena. The bulk chemistry of the rock is the same as that of the surrounding siliciclastic sandstone. The 14C analysis of a coal fragment from bottom of the body yields the conventional age of 227(±50) years. The Ricetto occurrence is an example of pyrometamorphism of a siliceous limestone induced by a charcoal pit burning. The small size of the heat source at Ricetto caused an intense but short-lived melting of the country rock. Prograde metamorphism caused a temperature increase up to 1,000–1,100 °C when melilite crystallization conditions were reached at appreciable P(CO2) and high f(O2). Melting occurred in a close system represented by the simplified equation: 3Cal+16.5Qtz+Ms+Bt→Mel+Melt+2H2O+3CO2+0.5O2. Diopside+calcic plagioclase+wollastonite formed by melilite breakdown during rapid cooling, through the reaction: 6Mel+6Qtz+0.5O2→3Di+2An+7Wo. Liquid immiscibility caused the separation between the felsic melt component and the femic melilite-bearing component. Immiscibility was characterized by different fractionation of alumina and alkalies between these two phases. Differences in bulk, glass, and mineral chemistry between the Ricetto and other melilite-bearing pyrometamorphic rocks can be attributed mainly to different protoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Accordi G, Carbone F, Civitelli G, Corda L, De Rita D, Esu D, Funiciello R, Kotsakis T, Mariotti G, Sposato A (1986) Lithofacies map of Latium-Abruzzi and neighbouring areas. CNR Progetto Finalizzato Geodinamica, sottoprogetto 4

  • Aurisicchio C, Federico M, Gianfagna A (1988) Clinopyroxene chemistry of the high-potassium suite from the Alban Hills, Italy. Mineral Petrol 39:1–19

    CAS  Google Scholar 

  • Barton M, Varekamp JC, Van Bergen MJ (1984): Complex zoning of clinopyroxenes in the lavas of Vulsini, Latium, Italy: evidence for magma mixing. J Volcanol Geotherm Res 14:361–388

    Article  Google Scholar 

  • Bastin ES (1905) Note on baked clays and natural slags in eastern Wyoming. J Geol 13:408–412

    Google Scholar 

  • Bellotti P, Evangelista S, Milli S, Valeri P (1987) Un corpo lavico nelle Marne ad Orbulina di Ricetto. Rend Soc Geol Ital 10:67–70

    Google Scholar 

  • Bellotti P, Landini B, Valeri P (1984) Associazioni di facies e lineamenti evolutivi generali del “complesso torbiditico altomiocenico laziale-abruzzese”. Bol Soc Geol Ital 103:311–326

    Google Scholar 

  • Bentor YK (1982) Combustion-metamorphic glasses. J Non-Cryst Solids 67:433–448

  • Bindeman IN, Bailey JC (1994) A model of reverse differentiation at Dikii Greben’ Volcano, Kamchatka: progressive basic magma vesiculation in a silicic magma chamber. Contrib Mineral Petrol 117:263–278

    CAS  Google Scholar 

  • Bustin RM, Mathews WH (1982) In situ gasification of coal, a natural example: history, petrology, and mechanics of combustion. Can J Earth Sci 19:514–523

    CAS  Google Scholar 

  • Carbonin S, Dal Negro A, Molin GM, Munno R, Rossi G, Lirer L, Piccirillo EM (1984) Crystal chemistry of Ca-rich pyroxenes from undersaturated to oversaturated trachitic rocks, and their relationships with pyroxenes from basalts. Lithos 17:191–202

    Article  CAS  Google Scholar 

  • Cipollari P, Cosentino D, Guerrera F, Laurenzi MA, Renzulli A, Tramontana M (1998) Biostratigraphical correlation and geochronology of volcaniclastic horizons across the Tortonian/Messinian boundary in the Apennine foreland basin system. An Tectonicae 13:113–132

    Google Scholar 

  • Clark BH, Peacor DR (1992) Pyrometamorphism and partial melting of shales during combustion metamorphism: mineralogical, textural, and chemical effects. Contrib Mineral Petrol 112:558–568

    CAS  Google Scholar 

  • Compagnoni B, Galluzzo F, Pampaloni ML, Pichezzi RM, Raffi I, Rossi M, Santantonio M (1991a) Dati sulla lito-biostratigrafia delle successioni terrigene nell’area tra i Monti Simbruini e i Monti Carseolani (Appennino Centrale). Studi Geol Camerti, vol spec 1991/2:173–179

  • Compagnoni B, Galluzzo F, Santantonio M (1991b) Schema tettonico dei rilievi carbonatici compresi nel F˚ 367 “Tagliacozzo” alla scala 1:50.000. Studi Geol Camerti, vol spec 1991/2:43–46

  • Cosca MA, Essene EJ, Geissman JW, Simmons WB, Coates DA (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am Mineral 74:85–100

    CAS  Google Scholar 

  • Cundari A, Ferguson AK (1991) Petrogenetic relationships between melilite and lamproite in the Roman Comagmatic Region: the lavas of S. Venanzo and Cupaello. Contrib Mineral Petrol 107:343–357

    CAS  Google Scholar 

  • De Wys EC, Foster WR (1958) The system diopside – anorthite - åkermanite. Mineral Mag 31:736–743

    Google Scholar 

  • Eskola P (1939) Die metamorphen Gesteine. In: Barth TFW, Correns CW, Eskola P (eds) Die Entstehung der Gesteine. Springer, Berlin Heidelberg New York, pp 263–407

  • Ferry JM, Wing BA, Penniston-Dorland SC, Rumble D (2002) The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data from the Monzoni and Predazzo aureoles, northern Italy, and global review. Contrib Mineral Petrol 142:679–699

    Google Scholar 

  • Fine G, Stolper E (1985) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278

    Article  Google Scholar 

  • Fine G, Stolper E (1986) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contrib Mineral Petrol 91:105–121

    Google Scholar 

  • Foit FF, Hooper RL, Rosenberg PE (1987) An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming. Am Mineral 72:137–147

    CAS  Google Scholar 

  • Freestone IC, Powell R (1983) The low-temperature field of liquid immiscibility in the system K2O–Al2O3–FeO–SiO2 with special reference to the join fayalite–leucite–silica. Contrib Mineral Petrol 82:291–299

    CAS  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    CAS  Google Scholar 

  • Gallo F, Giammetti F, Venturelli G, Vernia L (1984) The kamafugitic rocks of San Venanzo and Cuppaello, Central Italy. Neues Jahrb Mineral Mh 5:198–210

    Google Scholar 

  • Giordano G (1981) Tecnologia del legno. UTET, Torino, pp 995–1014

  • Heinrich W, Gottschalk M (1994) Fluid flow patterns and infiltration isograds in melilite marbles from the Bufa del Diente contact metamorphic aureole, north-east Mexico. J Metamorph Geol 12:345–359

    CAS  Google Scholar 

  • Hoscheck G (1974) Gehlenite stability in the system CaO–Al2O3–SiO2–H2O–CO2. Contrib Mineral Petrol 47:245–254

    Google Scholar 

  • Ihinger PD, Hervig RL, McMillan PF (1994) Analytical methods for volatiles in glasses. Rev Mineral 30:67–121

    CAS  Google Scholar 

  • Koch L (1930) Über das System Wollastonit – Anorthit – Pyroxen. Neues Jahrb Mineral Geol Beilage Bd 61:278–318

    Google Scholar 

  • Lange J, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 53:2195–2204

    Article  Google Scholar 

  • Lange J, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Rev Mineral 24:25–64

    CAS  Google Scholar 

  • Lupini L (1993) Il distretto ultalcalino umbro-laziale: mineralogia, petrologia, geochimica e relazioni con il contesto tettonico. PhD Thesis, Univ Perugia, 422 pp

  • Naslund HR (1983) The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. Am J Sci 283:1034–1059

    CAS  Google Scholar 

  • Osborn EF, Schairer JF (1941) The ternary system pseudowollastonite–åkermanite–gehlenite. Am J Sci 239:715–763

    CAS  Google Scholar 

  • Papike JJ, Cameron KL, Baldwin K (1974) Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geol Soc Am Progr Abstr 6:1053–1054

    Google Scholar 

  • Pawley AR, Holloway JR, McMillan PF (1992) The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt. Earth Planet Sci Lett 110:213–225

    Article  CAS  Google Scholar 

  • Philpotts AR (1976) Silicate liquid immiscibility: its probable extent and petrogenetic significance. Am J Sci 276:1147–1177

    CAS  Google Scholar 

  • Philpotts AR (1977) Archean variolites—quenched immiscible liquids: discussion. Can J Earth Sci 14:139–144

    Google Scholar 

  • Philpotts AR (1982) Composition of immiscible liquids in volcanic rocks. Contrib Mineral Petrol 80:201–218

    CAS  Google Scholar 

  • Roedder E (1951) Low-temperature liquid immiscibility in the system K2O–FeO–Al2O3–SiO2. Am Mineral 36:282–286

    CAS  Google Scholar 

  • Schölze H (1959) Der Einbau der Wassers in Gläsern. Glastech Ber 32:81–88

    CAS  Google Scholar 

  • Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81:1–17

    CAS  Google Scholar 

  • Stoppa F (1988) L’euremite di Colle Fabbri (Spoleto): un litotipo ad affinità carbonatica in Italia. Bol Soc Geol Ital 107:239–248

    Google Scholar 

  • Traversa G, Bellotti P, Evangelista S, Milli S, Ronca S, Traversa F, Valeri P (1991) Preliminary data on melilititic lavas of the Carseolani Mountains (Rieti). Per Mineral 60:81–82

    Google Scholar 

  • Treiman AH, Essene EJ (1983) Phase equilibria in the system CaO–SiO2–CO2. Am J Sci 283A:97–120

    Google Scholar 

  • Velde D, Yoder HS Jr (1977) Melilite and melilite-bearing igneous rocks. Carnegie Inst Wash Annu Rep Dir Geophys Lab 1976–7:478–485

  • Visser W, Koster van Groos AF (1979) Phase relationship in the system K2O–FeO–Al2O3–SiO2 with special emphasis on low-temperature immiscibility. Am J Sci 274:70–91

    Google Scholar 

  • Weiblen PW, Morey GB (1980) A summary of the stratigraphy, petrology, and stricture of the Duluth Complex. Am J Sci 280A:88–133

    Google Scholar 

  • Williams JP, Su Y-S, Strzegowski WR, Butler BL, Hoover HL, Altemose VO (1976) Direct determination of water in glass. Ceram Bull 55:524–527

    CAS  Google Scholar 

  • Yoder HS (1952) The MgO–Al2O3–SiO2–H2O system and the related metamorphic facies. Am J Sci, Bowen vol, pp 569–627

  • Yoder HS (1973) Melilite stability and paragenesis. Fortschr Mineral 50:140–173

    CAS  Google Scholar 

  • Zharikov VA, Shmulovich KI, Bulatov VK (1977) Experimental studies in the system CaO–MgO–Al2O3–SiO2–CO2–H2O and conditions of high-temperature metamorphism. Tectonophysics 43:142–162

    Article  Google Scholar 

Download references

Acknowledgements

D. Cosentino (Rome) challenged us to clarify the origin of the Ricetto body. M. Follieri (Rome) gave us encouragement and helpful suggestions. Revisions by A. Mottana (Rome) enabled us to improve both the contents and style of the manuscript. This paper also benefited by revisions and criticism of M. Raith (Bonn) and T. Kunzmann (Munich), which are gratefully acknowledged. G.M. Crisci (Cosenza) and C. Aurisicchio (Rome) provided the XRF and EMP analysis facilities, respectively. Assistance of U. Lanzafame (XRF), L. Martarelli (EMPA), P. Cipollari (SEM), and C. Romano (FTIR) is also acknowledged. Courtesy of R. Marcon (IGI) has been invaluable. During the final revision phase of this manuscript, one of the authors, Salvatore Improta, passed away unexpectedly. Still stunned, the other authors can only mourn for the loss of a such careful scientist and amiable person.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Capitanio.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00531-004-0399-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capitanio, F., Larocca, F. & Improta, S. High-temperature rapid pyrometamorphism induced by a charcoal pit burning: The case of Ricetto, central Italy. Int J Earth Sci (Geol Rundsch) 93, 107–118 (2004). https://doi.org/10.1007/s00531-003-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-003-0374-3

Keywords

Navigation