Skip to main content
Log in

Global dynamics of large solution for the compressible Navier–Stokes–Korteweg equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the Navier–Stokes–Korteweg equations governed by the evolution of compressible fluids with capillarity effects. We first investigate the global well-posedness of solution in the critical Besov space for large initial data. Contrary to pure parabolic methods in Charve et al. (Indiana Univ Math J 70:1903–1944, 2021), we also take the strong dispersion due to large capillarity coefficient \(\kappa \) into considerations. By establishing a dissipative–dispersive estimate, we are able to obtain uniform estimates and incompressible limits in terms of \(\kappa \) simultaneously. Secondly, we establish the large time behaviors of the solution. We would make full use of both parabolic mechanics and dispersive structure which implicates our decay results without limitations for upper bound of derivatives while requiring no smallness for initial assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343. Springer (2011)

  2. Benzoni-Gavage, S., Danchin, R., Descombes, S., Jamet, D.: Structure of Korteweg models and stability of diffuse interfaces. Interfaces Free Bound. 7, 371–414 (2005)

    Article  MathSciNet  Google Scholar 

  3. Burtea, C., Haspot, B.: Vanishing capillarity limit of the Navier–Stokes–Korteweg system in one dimension with degenerate viscosity coefficient and discontinuous initial density. SIAM J. Math. Anal. 54, 1428–1469 (2022)

    Article  MathSciNet  Google Scholar 

  4. Bian, D., Yao, L., Zhu, C.: Vanishing capillarity limit of the compressible fluid models of Korteweg type to the Navier–Stokes equations. SIAM J. Math. Anal. 46, 1633–1650 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13, 515–542 (1997)

    Article  MathSciNet  Google Scholar 

  6. Charve, F., Danchin, R., Xu, J.: Gevrey analyticity and decay for the compressible Navier–Stokes system with capillarity. Indiana Univ. Math. J. 70, 1903–1944 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chemin, J.Y.: Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  Google Scholar 

  8. Chemin, J.Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 362, 2859–2873 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chemin, J.Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)

    Article  Google Scholar 

  10. Chikami, N., Kobayashi, T.: Global well-posedness and time-decay estimates of the compressible Navier–Stokes–Korteweg system in critical Besov spaces. J. Math. Fluid Mech. 21, 31 (2019)

  11. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  Google Scholar 

  12. Danchin, R.: Zero Mach number limit in critical spaces for compressible Navier–Stokes equations. Ann. Sci. École Norm. Sup. 35, 27–75 (2002)

    Article  MathSciNet  Google Scholar 

  13. Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. H. Poincaré Anal. Non linéaire 18, 97–133 (2001)

    Article  MathSciNet  Google Scholar 

  14. Danchin, R., Desjardins, B., Lin, C.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28, 843–868 (2003)

    Article  MathSciNet  Google Scholar 

  15. Fanelli, F.: Highly rotating viscous compressible fluids in presence of capillarity effects. Math. Ann. 366, 981–1033 (2016)

    Article  MathSciNet  Google Scholar 

  16. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  17. Guo, Z., Peng, L., Wang, B.: Decay estimates for a class of wave equations. J. Funct. Anal. 254, 1642–1660 (2008)

    Article  MathSciNet  Google Scholar 

  18. Gustafson, S., Nakanishi, K., Tsai, T.: Scattering for the Gross–Pitaevskii equation. Math. Res. Lett. 13, 273–285 (2006)

    Article  MathSciNet  Google Scholar 

  19. Gustafson, S., Nakanishi, K., Tsai, T.: Scattering theory for the Gross–Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11, 657–707 (2009)

    Article  MathSciNet  Google Scholar 

  20. Hattori, H., Li, D.: Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198, 84–97 (1996)

    Article  MathSciNet  Google Scholar 

  21. Hattori, H., Li, D.: Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 25, 85–98 (1994)

    Article  MathSciNet  Google Scholar 

  22. Hou, X., Yao, L., Zhu, C.: Vanishing capillarity limit of the compressible non-isentropic Navier–Stokes–Korteweg system to Navier–Stokes system. J. Math. Anal. Appl. 448, 421–446 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ju, Q., Xu, J.: Zero-Mach limit of the compressible Navier–Stokes–Korteweg equations. J. Math. Phys. 63, 21 (2022)

    Article  MathSciNet  Google Scholar 

  24. Kawashima, S., Shibata, Y., Xu, J.: Dissipative structure for symmetric hyperbolic-parabolic systems with Korteweg-type dispersion. Commun. Part. Differ. Equ. 47, 378–400 (2021)

    Article  MathSciNet  Google Scholar 

  25. Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fluides si l\(^{\prime }\)on tient compte des forces capillaires par des variations de densité. Arch. Néer. Sci. Exactes Sér. II(6), 1–24 (1901)

    Google Scholar 

  26. Leonardi, S., Málek, J., Nečas, J., Pokorný, M.: On axially symmetric flows in \(\mathbb{R} ^3\). Z. Anal. Anwendungen 18, 639–649 (1999)

    Article  MathSciNet  Google Scholar 

  27. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Yong, W.: Zero Mach number limit of the compressible Navier–Stokes–Korteweg equations. Commun. Math. Sci. 14, 233–247 (2016)

    Article  MathSciNet  Google Scholar 

  29. Lorenzo, B.: Characterization of solutions to dissipative systems with sharp algebraic decay. SIAM J. Math. Anal. 48, 1616–1633 (2016)

    Article  MathSciNet  Google Scholar 

  30. Murata, M., Shibata, Y.: The global well-posedness for the compressible fluid model of Korteweg type. SIAM J. Math. Anal. 52, 6313–6337 (2020)

    Article  MathSciNet  Google Scholar 

  31. Niche, C.J., Schonbek, M.E.: Decay characterization of solutions to dissipative equations. J. Lond. Math. Soc. 91, 573–595 (2015)

    Article  MathSciNet  Google Scholar 

  32. Oliver, M., Titi, E.: Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in \(\mathbb{R} ^n\). J. Funct. Anal. 172, 1–18 (2000)

    Article  MathSciNet  Google Scholar 

  33. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 9, 187–191 (1962)

    Article  MathSciNet  Google Scholar 

  34. Song, Z., Xu, J.: Global existence and analyticity of \(L^p\) solutions to the compressible fluid model of Korteweg type. J. Differ. Equ. 370, 101–139 (2023)

    Article  Google Scholar 

  35. Schonbek, M.E.: Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11, 733–763 (1986)

    Article  MathSciNet  Google Scholar 

  36. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 88, 209–222 (1985)

    Article  MathSciNet  Google Scholar 

  37. Schonbek, M.: Large time behaviour of solutions to the Navier–Stokes equations in \(H^m\) spaces. Commun. Part. Differ. Equ. 20, 103–117 (1995)

    Article  Google Scholar 

  38. Stein, E.M.: Harmonic Analysis. Princeton Univ. Press, Princeton (1993)

    Google Scholar 

  39. Van der Waals, J.F.: Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung. Phys. Chem. 13, 657–725 (1894)

    Google Scholar 

  40. Wiegner, M.: Decay results for weak solutions of the Navier–Stokes equations on \(\mathbb{R} ^d\). J. Lond. Math. Soc. 35, 303–313 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks Professor Nakanishi Kenji and Professor Jiang Xu for helpful suggestions and discussions in the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihao Song.

Ethics declarations

Conflict of interest

The author does not have any possible Conflict of interest.

Additional information

Communicated by Y. Tonegawa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we would recall some classical theory concerns Fourier localization technique. The Fourier transform of a function \(f\in {\mathcal {S}}\) (the Schwarz class) is denoted by

$$\begin{aligned} {\widehat{f}}(\xi )={\mathcal {F}}[f](\xi ):=\int _{\mathbb {R}^{d}}f(x)e^{-i\xi \cdot x}dx. \end{aligned}$$

For \( 1\le p\le \infty \), we denote by \(L^{p}=L^{p}(\mathbb {R}^{d})\) the usual Lebesgue space on \(\mathbb {R}^{d}\) with the norm \(\Vert \cdot \Vert _{L^{p}}\).

For convenience of reader, we would like to recall the Littlewood–Paley decomposition, Besov spaces and related analysis tools. The reader is referred to Chap. 2 and Chap. 3 of [1] for more details. Let \(\chi \) be a smooth function valued in [0, 1], such that \(\chi \) is supported in the ball \({\textbf{B}}(0,\frac{4}{3})=\{\xi \in \mathbb {R}^{d}:|\xi |\le \frac{4}{3}\}\). Set \(\varphi (\xi )=\chi (\xi /2)-\chi (\xi )\). Then \(\varphi \) is supported in the shell \({\textbf{C}}(0,\frac{3}{4},\frac{8}{3})=\{\xi \in \mathbb {R}^{d}:\frac{3}{4}\le |\xi |\le \frac{8}{3}\}\) so that

$$\begin{aligned} \sum _{q\in \mathbb {Z}}\varphi (2^{-q}\xi )=1, \quad \forall \xi \in \mathbb {R}^{d}\backslash \{{0}\}. \end{aligned}$$

For any tempered distribution \(f\in {\mathcal {S}}'\), one can define the homogeneous dyadic blocks and homogeneous low-frequency cut- off operators:

$$\begin{aligned}{} & {} \dot{\Delta }_{q}f:=\varphi (2^{-q}D)f={\mathcal {F}}^{-1}(\varphi (2^{-q}\xi ){\mathcal {F}}f), \quad q\in \mathbb {Z}; \\{} & {} {\dot{S}}_{q}f:=\chi (2^{-q}D)f={\mathcal {F}}^{-1}(\chi (2^{-q}\xi ){\mathcal {F}}f), \quad q\in \mathbb {Z}. \end{aligned}$$

Furthermore, we have the formal homogeneous decomposition as follows

$$\begin{aligned} f=\sum _{q\in \mathbb {Z}}\dot{\Delta }_{q}f. \end{aligned}$$

Also, throughout the paper, \(f^{h}\) and \(f^{\ell }\) represent the high frequency part and low frequency part of f respectively where

$$\begin{aligned} f^{\ell }\triangleq {\dot{S}}_{q_{0}}f;\quad f^{h}\triangleq (1-{\dot{S}}_{q_{0}})f \end{aligned}$$

with some given constant \(q_{0}\).

Denote by \({\mathcal {S}}'_{0}:=\mathcal {S'}/{\mathcal {P}}\) the tempered distributions modulo polynomials \({\mathcal {P}}\). As we known, the homogeneous Besov spaces can be characterised in terms of the above spectral cut-off blocks.

1.1 Homogeneous Besov space

Definition 5.1

For \(s\in \mathbb {R}\) and \(1\le p,r\le \infty \), the homogeneous Besov spaces \({\dot{B}}^s_{p,r}\) are defined by

$$\begin{aligned} {\dot{B}}^s_{p,r}:=\Big \{f\in {\mathcal {S}}'_{0}:\Vert f\Vert _{{\dot{B}}^s_{p,r}}<\infty \Big \}, \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{{\dot{B}}^s_{p,r}}:=\Big (\sum _{q\in \mathbb {Z}}(2^{qs}\Vert \dot{\Delta }_qf\Vert _{L^{p}})^{r}\Big )^{1/r} \end{aligned}$$

with the usual convention if \(r=\infty \).

We often use the following classical properties of Besov spaces (see [1]):

\(\bullet \)Scaling invariance: For any \(\sigma \in \mathbb {R}\) and \((p,r)\in [1,\infty ]^{2}\), there exists a constant \(C=C(\sigma ,p,r,d)\) such that for all \(\lambda >0\) and \(f\in {\dot{B}}_{p,r}^{\sigma }\), we have

$$\begin{aligned} C^{-1}\lambda ^{\sigma -\frac{d}{p}}\Vert f\Vert _{{\dot{B}}_{p,r}^{\sigma }} \le \Vert f(\lambda \,\cdot )\Vert _{{\dot{B}}_{p,r}^{\sigma }}\le C\lambda ^{\sigma -\frac{d}{p}}\Vert f\Vert _{{\dot{B}}_{p,r}^{\sigma }}. \end{aligned}$$

\(\bullet \)Completeness: \({\dot{B}}^{\sigma }_{p,r}\) is a Banach space whenever \( \sigma <\frac{d}{p}\) or \(\sigma \le \frac{d}{p}\) and \(r=1\).

\(\bullet \)Interpolation: The following inequality is satisfied for \(1\le p,r_{1},r_{2}, r\le \infty , \sigma _{1}\ne \sigma _{2}\) and \(\theta \in (0,1)\):

$$\begin{aligned} \Vert f\Vert _{{\dot{B}}_{p,r}^{\theta \sigma _{1}+(1-\theta )\sigma _{2}}}\lesssim \Vert f\Vert _{{\dot{B}}_{p,r_{1}}^{\sigma _{1}}}^{\theta } \Vert f\Vert _{{\dot{B}}_{p,r_2}^{\sigma _{2}}}^{1-\theta } \end{aligned}$$

with \(\frac{1}{r}=\frac{\theta }{r_{1}}+\frac{1-\theta }{r_{2}}\).

\(\bullet \)Action of Fourier multipliers: If F is a smooth homogeneous of degree m function on \(\mathbb {R}^{d}\backslash \{0\}\) then

$$\begin{aligned} F(D):{\dot{B}}_{p,r}^{\sigma }\rightarrow {\dot{B}}_{p,r}^{\sigma -m}. \end{aligned}$$

The embedding properties will be used several times throughout the paper.

Proposition 5.1

  • For any \(p\in [1,\infty ]\) we have the continuous embedding \({\dot{B}}^{0}_{p,1}\hookrightarrow L^{p}\hookrightarrow {\dot{B}}^{0}_{p,\infty }\).

  • If \(\sigma \in \mathbb {R}\), \(1\le p_{1}\le p_{2}\le \infty \) and \(1\le r_{1}\le r_{2}\le \infty ,\) then \({\dot{B}}^{\sigma }_{p_1,r_1}\hookrightarrow {\dot{B}}^{\sigma -d\,(\frac{1}{p_{1}}-\frac{1}{p_{2}})}_{p_{2},r_{2}}\).

  • The space \({\dot{B}}^{\frac{d}{p}}_{p,1}\) is continuously embedded in the set of bounded continuous functions (going to zero at infinity if, additionally, \(p<\infty \)).

In addition, we also recall the classical Bernstein inequality:

$$\begin{aligned} \Vert D^{k}f\Vert _{L^{b}} \le C^{1+k} \lambda ^{k+d\left( \frac{1}{a}-\frac{1}{b}\right) }\Vert f\Vert _{L^{a}} \end{aligned}$$
(5.1)

that holds for all function f such that \(\textrm{Supp}\,{\mathcal {F}}f\subset \left\{ \xi \in \mathbb {R}^{d}: |\xi |\le R\lambda \right\} \) for some \(R>0\) and \(\lambda >0\), if \(k\in \mathbb {N}\) and \(1\le a\le b\le \infty \).

More generally, if we assume f to satisfy \(\textrm{Supp}\,{\mathcal {F}}f\subset \{\xi \in \mathbb {R}^{d}: R_{1}\lambda \le |\xi |\le R_{2}\lambda \}\) for some \(0<R_{1}<R_{2}\) and \(\lambda >0\), then for any smooth homogeneous of degree m function A on \(\mathbb {R}^d{\setminus }\{0\}\) and \(1\le a\le \infty \), we have (see e.g. Lemma 2.2 in [1]):

$$\begin{aligned} \Vert A(D)f\Vert _{L^{a}}\approx \lambda ^{m}\Vert f\Vert _{L^{a}}. \end{aligned}$$
(5.2)

An obvious consequence of (5.1) and (5.2) is that \(\Vert D^{k}f\Vert _{{\dot{B}}^{s}_{p, r}}\thickapprox \Vert f\Vert _{{\dot{B}}^{s+k}_{p, r}}\) for all \(k\in \mathbb {N}\).

Moreover, a class of mixed space-time Besov spaces are also used when studying the evolution PDEs, which were firstly proposed by J.-Y. Chemin and N. Lerner in [9].

Definition 5.2

For \(T>0,s\in \mathbb {R}, 1\le r,\theta \le \infty \), the homogeneous Chemin-Lerner spaces \(\widetilde{L}^\theta _{T}({\dot{B}}^s_{p,r})\) are defined by

$$\begin{aligned} \widetilde{L}^\theta _{T}({\dot{B}}^s_{p,r}):=\Big \{f\in L^\theta (0,T;{\mathcal {S}}'_{0}):\Vert f\Vert _{\widetilde{L}^\theta _{T}({\dot{B}}^s_{p,r})}<\infty \Big \}, \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{\widetilde{L}^\theta _{T}({\dot{B}}^s_{p,r})}:=\Bigg (\sum _{q\in \mathbb {Z}}(2^{qs}\Vert \dot{\Delta }_qf\Vert _{L^\theta _{T}(L^{p})})^{r}\Bigg )^{1/r} \end{aligned}$$

with the usual convention if \(r=\infty \).

The Chemin-Lerner space \({\widetilde{L}}^{\theta }_{T}({\dot{B}}^{s}_{p,r})\) may be linked with the standard spaces \(L_{T}^{\theta }({\dot{B}}^{s}_{p,r})\) by means of Minkowski’s inequality.

Remark 5.1

It holds that

$$\begin{aligned} \left\| f\right\| _{{\widetilde{L}}^{\theta }_{T}({\dot{B}}^{s}_{p,r})}\le \left\| f\right\| _{L^{\theta }_{T}({\dot{B}}^{s}_{p,r})}\,\,\, \text{ if } \,\, \, r\ge \theta ;\ \ \ \ \left\| f\right\| _{{\widetilde{L}}^{\theta }_{T}({\dot{B}}^{s}_{p,r})}\ge \left\| f\right\| _{L^{\theta }_{T}({\dot{B}}^{s}_{p,r})}\,\,\, \text{ if }\,\,\, r\le \theta . \end{aligned}$$

1.2 Product estimates and composition estimates

The product estimates in Besov spaces play a fundamental role in bounding bilinear terms in (2.1) (see [1]).

Proposition 5.2

Let \(s>0\) and \(1\le p,\,r\le \infty \). Then \({\dot{B}}^{s}_{p,r}\cap L^{\infty }\) is an algebra and

$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{s}_{p,r}}\lesssim \Vert f\Vert _{L^{\infty }}\Vert g\Vert _{{\dot{B}}^{s}_{p,r}}+\Vert g\Vert _{L^{\infty }}\Vert f\Vert _{{\dot{B}}^{s}_{p,r}}. \end{aligned}$$

If \(s_{1},s_{2}\le \frac{d}{p}\), \(s_{1}+s_{2}>d\max \{0,\frac{2}{p}-1\}\), then

$$\begin{aligned} \Vert ab\Vert _{{\dot{B}}^{s_{1}+s_{2}-\frac{d}{p}}_{p,1}}\lesssim \Vert a\Vert _{{\dot{B}}^{s_{1}}_{p,1}}\Vert b\Vert _{{\dot{B}}^{s_{2}}_{p,1}}. \end{aligned}$$

If \(s_{1}\le \frac{d}{p}\), \(s_{2}<\frac{d}{p}\), \(s_{1}+s_{2}\ge d\max \{0,\frac{2}{p}-1\}\), then

$$\begin{aligned} \Vert ab\Vert _{{\dot{B}}^{s_{1}+s_{2}-\frac{d}{p}}_{p,\infty }}\lesssim \Vert a\Vert _{{\dot{B}}^{s_{1}}_{p,1}}\Vert b\Vert _{{\dot{B}}^{s_{2}}_{p,\infty }}. \end{aligned}$$

System (2.1) also involves compositions of functions that are handled according to the following estimates.

Proposition 5.3

Let \(F:\mathbb {R}\rightarrow \mathbb {R}\) be smooth with \(F(0)=0\). For all \(1\le p,\,r\le \infty \) and \(s>0\) we have \(F(f)\in {\dot{B}}^{s}_{p,r}\cap L^{\infty }\) for \(f\in {\dot{B}}^{s}_{p,r}\cap L^{\infty }\), and

$$\begin{aligned} \Vert F(f)\Vert _{\dot{B}^{s}_{p,r}}\le C\Vert f\Vert _{\dot{B}^{s}_{p,r}} \end{aligned}$$

with \(C>0\) depending only on \(\Vert f\Vert _{L^{\infty }}\), \(F'\) (and higher derivatives), s, p and d.

In the case \(s>-d\min (\frac{1}{p},\frac{1}{p'})\) then \(f\in {\dot{B}}^{s}_{p,r}\cap {\dot{B}}^{\frac{d}{p}}_{p,1}\) implies that \(F(f)\in {\dot{B}}^{s}_{p,r}\cap {\dot{B}}^{\frac{d}{p}}_{p,1}\), and

$$\begin{aligned} \Vert F(f)\Vert _{\dot{B}^{s}_{p,r}}\le C\Vert f\Vert _{{\dot{B}}^{s}_{p,r}}, \end{aligned}$$

where \(C>0\) is some constant depends on \(\Vert f\Vert _{\dot{B}^{\frac{d}{p}}_{p,1}}\), Fsp and d.

1.3 Proof of Proposition 3.2

Taking advantages of interpolation, it is enough to prove the case \(p=\infty \). Inspired by Young inequality and heat kernel estimates under Fourier localization, we immediately have

$$\begin{aligned} \Vert e^{i\sqrt{\kappa } Ht}e^{\Delta t}f_{j}\Vert _{L^\infty }\lesssim e^{-2^{2j}t}\Vert e^{i\sqrt{\kappa } Ht}\psi _{j}\Vert _{L^\infty }\Vert f_{j}\Vert _{L^1}. \end{aligned}$$
(5.3)

where \(\widehat{\psi }(\xi )=\varphi (\xi )\). Then (3.33) is given if the following estimate holds true:

$$\begin{aligned} \Vert e^{i\sqrt{\kappa } Ht}\psi _{j}\Vert _{L^\infty }\lesssim (\sqrt{\kappa } t)^{-\frac{d}{2}}. \end{aligned}$$
(5.4)

The (5.4) is proved by stationary phase method give in [17] and we shall focus on case \(d\ge 2\) while \(d=1\) is more direct by van der Corput’s lemma, see [38]. Actually, denote by \(J_{m} (r)\) the Bessel function, one could write

$$\begin{aligned} e^{i\sqrt{\kappa } Ht}\psi _{j}=2^{jd}\int ^{\infty }_{0}e^{it\widetilde{H}(2^{j}r)}\varphi (r)r^{d-1}(r2^{j}|x|)^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r2^{j}|x|)dr \end{aligned}$$
(5.5)

where \(\widetilde{H}(r)=r\sqrt{1+\kappa r^2}\). Then it is not difficult to see

$$\begin{aligned}{} & {} \widetilde{H}'(r)\thicksim 1;\,\,\,\widetilde{H}''(r)\thicksim \kappa r,\,\,\,\widetilde{H}^{(m)}(r)\le (\kappa r)^{1-m},\,\,\,r\le \kappa ^{-\frac{1}{2}};\\{} & {} \widetilde{H}'(r)\thicksim \sqrt{\kappa }r;\,\,\,\widetilde{H}''(r)\thicksim \sqrt{\kappa },\,\,\,\widetilde{H}^{(m)}(r)\le \sqrt{\kappa }r^{2-m},\,\,\,r\ge \kappa ^{-\frac{1}{2}}. \end{aligned}$$

Therefore, we would consider case (i). \(2^{j}\le \kappa ^{-\frac{1}{2}}\) and (ii). \(2^{j}\le \kappa ^{-\frac{1}{2}}\) respectively. For case (i), the corresponding behaviors are closely linked with wave operator and we start with \(|x|\le 2\). In fact, denote \(D_{r}=\frac{1}{it\widetilde{H}'(2^j r)2^j}\frac{d}{dr}\), integral by parts in terms of \(D_{r}\) immediately yields

$$\begin{aligned} e^{i\sqrt{\kappa } Ht}\psi _{j}= & {} 2^{jd}\int ^{\infty }_{0}D^{k}_{r}\big (e^{it\widetilde{H}(2^{j}r)}\big )\varphi (r)r^{d-1}(r2^{j}|x|)^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r2^{j}|x|)dr\nonumber \\= & {} \frac{2^{jd}}{(it2^j)^k}\sum ^{k}_{m=0}\sum ^{m}_{l_{m}}\int ^{\infty }_{0}e^{it\widetilde{H}(2^{j}r)}\prod _{l_{m}}\partial ^{l_{m}}_{r}\left( \frac{1}{\widetilde{H}'(2^j r)}\right) \nonumber \\&\cdot&\partial ^{k-m}_{r}\left( \varphi (r)r^{d-1}(r2^{j}|x|)^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r2^{j}|x|)\right) dr. \end{aligned}$$
(5.6)

where \(m=l_{1}+l_{2}+...+l_{m}\). Keep in mind that for any \(m\ge 0\)

$$\begin{aligned} \frac{d^{m}}{d^{m}_{r}}\left( \frac{1}{\widetilde{H}'(2^j r)}\right) \le c,\,\,\,\textrm{for}\,\,\,2^{j}\le \kappa ^{-\frac{1}{2}}, \end{aligned}$$

the vanishing property of the Bessel function at the origin indicates

$$\begin{aligned} |e^{i\sqrt{\kappa } Ht}\psi _{j}|\le & {} Ct^{-k}2^{j(d-k)}. \end{aligned}$$
(5.7)

Hence, taking \(k=\frac{d}{2}\) yields (5.4). For case \(|x|\ge 2\), we rewrite (5.5) into

$$\begin{aligned} e^{i\sqrt{\kappa } Ht}\psi _{j}=2^{jd}\int ^{\infty }_{0}e^{it(\widetilde{H}(2^{j}r)-r|x|)}\varphi (r)r^{d-1}h(r|x|)dr \end{aligned}$$
(5.8)

where

$$\begin{aligned} {\mathcal {R}}(e^{ir}h(r))=cr^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r). \end{aligned}$$

At this moment, we start with |x| fulfills \(\frac{1}{2}\inf \limits _{r}t2^{j}\widetilde{H}'(2^{j}r)\le |x|\le 2\sup \limits _{r} t2^{j}\widetilde{H}'(2^{j}r)\). Denote \({\bar{H}}(r)=\widetilde{H}(2^{j}r)-r|x|\), it is clear that \({\bar{H}}''(r)=2^{2j}\widetilde{H}''(2^{j}r)\ge \kappa 2^{3j}\), therefore, by van der Corput’s lemma and pointwise estimates for h (see in [17]), there holds

$$\begin{aligned} |e^{i\sqrt{\kappa } Ht}\psi _{j}|\le & {} C(|t|\kappa 2^{3j})^{-\frac{1}{2}}\int ^{\infty }_{0}\big |\frac{d}{dr}(\varphi (r)r^{d-1}h(r|x|))\big |dr\le t^{-\frac{d}{2}}\kappa ^{-\frac{1}{2}}2^{\frac{d-2}{2}j}, \end{aligned}$$

which implies (5.4) by the fact \(2^{j}\le \kappa ^{-\frac{1}{2}}\). For \(|x|\le \frac{1}{2}\inf \limits _{r}t2^{j}\widetilde{H}'(2^{j}r)\) and \(2\sup \limits _{r} t2^{j}\widetilde{H}'(2^{j}r)\le |x|\), there holds

$$\begin{aligned} \big |{\bar{H}}'(r)\big |\ge c2^{j},\,\,\,c>0, \end{aligned}$$

we could repeat same calculations as (5.6)–(5.7) and conclude with (5.4).

The case \(2^{j}\ge \kappa ^{-\frac{1}{2}}\) is treated as low frequencies above, in which part could be regarded as a Schr\(\ddot{o}\)dinger  semi-group with parameter \(\sqrt{\kappa }\). We omit the detailed proof and conclude with (5.4).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z. Global dynamics of large solution for the compressible Navier–Stokes–Korteweg equations. Calc. Var. 63, 112 (2024). https://doi.org/10.1007/s00526-024-02723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02723-7

Mathematics Subject Classification