Skip to main content
Log in

Normalized solutions to the fractional Schrödinger equations with combined nonlinearities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the normalized solutions of the fractional nonlinear Schrödinger equations with combined nonlinearities

$$\begin{aligned} (-\Delta )^s u=\lambda u+\mu |u|^{q-2}u+|u|^{p-2}u \quad \text{ in }~{\mathbb {R}}^N, \end{aligned}$$

and we look for solutions which satisfy prescribed mass

$$\begin{aligned} \int _{\mathbb {R}^N}|u|^2=a^2, \end{aligned}$$

where \(N\ge 2,s\in (0,1),\mu \in \mathbb {R}\) and \(2<q<p<2_s^*=2N/(N-2s)\). Under different assumptions on \(q<p,a>0\) and \(\mu \in \mathbb {R}\), we prove some existence and nonexistence results about the normalized solutions. More specifically, in the purely \(L^2\)-subcritical case, we overcome the lack of compactness by virtue of the monotonicity of the least energy value and obtain the existence of ground state solution for \(\mu >0\). While for the defocusing situation \(\mu <0\), we prove the nonexistence result by constructing an auxiliary function. We emphasis that the nonexistence result is new even for Laplacian operator. In the purely \(L^2\)-supercritical case, we introduce a fiber energy functional to obtain the boundedness of the Palais–Smale sequence and get a mountain-pass type solution. In the combined-type cases, we construct different linking structures to obtain the saddle type solutions. Finally, we remark that we prove a uniqueness result for the homogeneous nonlinearity (\(\mu =0\)), which is based on the Morse index of ground state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, N., Weth, W.: Unstable normalized standing waves for the space periodic NLS. Anal. PDE 12(5), 1177–1213 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Notices Am. Math. Soc. 51(11), 1336–1347 (2004)

    MATH  Google Scholar 

  3. Applebaum, D.: Lévy processes and stochastic calculus. In: Cambridge Studies in Advanced Mathematics (vol. 116, 2nd edn). Cambridge University Press, Cambridge (2009)

  4. Almgren Jr., F.J., Lieb, E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2(4), 683–773 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. (Basel) 100(1), 75–83 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinb. Sect. A 148(2), 225–242 (2018)

    MATH  Google Scholar 

  7. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. Math. Pures Appl. (9) 106(4), 583–614 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Partial Differ. Equ. 58(1), 22 (2019)

    MATH  Google Scholar 

  10. Bartsch, T., Soave, N.: Correction to: “A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems” [J. Funct. Anal. 272 (12) (2017) 4998–5037] [MR3639521]. J. Funct. Anal. 275(2), 516–521 (2018)

  11. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal. 48(3), 2028–2058 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. (3) 107(2), 303–339 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Bonheure, D., Casteras, J.-B., Gou, T., Jeanjean, L.: Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime. Trans. Am. Math. Soc. 372(3), 2167–2212 (2019)

    MATH  Google Scholar 

  14. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Chang, X., Wang, Z.-Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26(2), 479–494 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Chen, H., Felmer, P., Quaas, A.: Large solutions to elliptic equations involving fractional Laplacian. Ann. Inst. H. Poincare Anal. Non Lineaire 32(6), 1199–1228 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Chen, W., Fang, Y., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274, 167–198 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Deng, Y., Shuai, W.: Sign-changing solutions for non-local elliptic equations involving the fractional Laplacain. Adv. Differ. Equ. 23(1–2), 109–134 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche (Catania) 68(1), 201–216 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142(6), 1237–1262 (2012)

    MATH  Google Scholar 

  23. Fibich, G., Merle, F.: Self-focusing on bounded domains. Physica D 155(1–2), 132–158 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Ghoussoub, N.: Duality and perturbation methods in critical point theory, with appendices by David Robinson. In: Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)

  26. Gou, T., Jeanjean, L.: Existence and orbital stability of standing waves for nonlinear Schrödinger systems. Nonlinear Anal. 144, 10–22 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Gou, T., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31(5), 2319–2345 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Guo, Y., Luo, Y., Zhang, Q.: Minimizers of mass critical Hartree energy functionals in bounded domains. J. Differ. Equ. 265(10), 5177–5211 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Guo, Y., Wang, Z.-Q., Zeng, X., Zhou, H.: Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials. Nonlinearity 31(3), 957–979 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Hirata, J., Tanaka, K.: Scalar field equations with \(L^2\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19(2), 263–290 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Ikoma, N., Tanaka, K.: A note on deformation argument for \(L^2\) normalized solutions of nonlinear Schrödinger equations and systems. Adv. Differ. Equ. 24(11–12), 609–646 (2019)

    MATH  Google Scholar 

  32. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Jeanjean, L., Lu, S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32(12), 4942–4966 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Li, G., Luo, X.: Normalized solutions for the Chern–Simons–Schrödinger equation in \(\mathbb{R}^2\). Ann. Acad. Sci. Fenn. Math. 42(1), 405–428 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. (French) [Symmetry and compactness in Sobolev spaces] J. Funct. Anal. 49(3), 315–334 (1982)

  36. Liu, Z.S., Luo, H.J., Zhang, Z.T.: Dancer–Fuc̆ik spectrum for fractional Schrödinger operators with a steep potential well on \(\mathbb{R}^N\). Nonlinear Anal. 189, 111565 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^2\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Noris, B., Tavares, H., Verzini, G.: Stable solitary waves with prescribed \(L^2\)-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin. Dyn. Syst. 35(12), 6085–6112 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc. Var. Partial Differ. Equ. 56(5), 133 (2017)

    MATH  Google Scholar 

  41. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N\). Calc. Var. Partial Differ. Equ. 54(3), 2785–2806 (2015)

    MATH  Google Scholar 

  42. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1986)

  43. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\). J. Math. Phys. 54(3), 031501 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Shang, X., Zhang, J., Yang, Y.: Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Commun. Pure Appl. Anal. 13(2), 567–584 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscr. Math. 143(1–2), 221–237 (2014)

    MATH  Google Scholar 

  48. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. arXiv:1811.00826

  49. Tan, J., Xiong, J.: A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin. Dyn. Syst. 31(3), 975–983 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Wang, Y., Liu, L., Wu, Y.: Extremal solutions for \(p\)-Laplacian fractional integro-differential equation with integral conditions on infinite intervals via iterative computation. Adv. Differ. Equ. 2015, 24 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Wu, J., Xu, X.: Well-posedness and inviscid limits of the Boussinesq equations with fractional Laplacian dissipation. Nonlinearity 27(9), 2215–2232 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Yan, S., Yang, J., Yu, X.: Equations involving fractional Laplacian operator: compactness and application. J. Funct. Anal. 269(1), 47–79 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Ye, H.: The existence of normalized solutions for \(L^2\)-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 66(4), 1483–1497 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, Z.: Variational, Topological, and Partial Order Methods with Their Applications. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  55. Zhu, X., Zhou, H.: Bifurcation from the essential spectrum of superlinear elliptic equations. Appl. Anal. 28(1), 51–66 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Zhang.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Luo is supported by the Fundamental Research Funds for the Central Universities, No. 531118010205, and by National Natural Science Foundation of China, No. 11901182. Z. Zhang is supported by National Natural Science Foundation of China, Nos. 11771428, 11926335.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Zhang, Z. Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. 59, 143 (2020). https://doi.org/10.1007/s00526-020-01814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01814-5

Mathematics Subject Classification

Navigation