Skip to main content
Log in

A universal thin film model for Ginzburg–Landau energy with dipolar interaction

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We present an analytical treatment of a three-dimensional variational model of a system that exhibits a second-order phase transition in the presence of dipolar interactions. Within the framework of Ginzburg–Landau theory, we concentrate on the case in which the domain occupied by the sample has the shape of a flat thin film and obtain a reduced two-dimensional, non-local variational model that describes the energetics of the system in terms of the order parameter averages across the film thickness. Namely, we show that the reduced two-dimensional model is in a certain sense asymptotically equivalent to the original three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we analyze two different thin film limits for the full three-dimensional model via the methods of \(\Gamma \)-convergence applied to the reduced two-dimensional model. In the first regime, in which the film thickness vanishes while all other parameters remain fixed, we recover the local two-dimensional Ginzburg–Landau model. On the other hand, when the film thickness vanishes while the sample’s lateral dimensions diverge at the right rate, we show that the system exhibits a transition from homogeneous to spatially modulated global energy minimizers. We identify a sharp threshold for this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Recall that \(D + B_\delta = \mathbf \{ {\mathbf {r}} \in {\mathbb {R}}^2 : \text {dist}(\mathbf r, D) < \delta \}\).

References

  1. Andelman, D., Broçhard, F., Joanny, J.F.: Phase transitions in Langmuir monolayers of polar molecules. J. Chem. Phys. 86, 3673–3681 (1987)

    Google Scholar 

  2. Andelman, D., Rosensweig, R.E.: Modulated phases: review and recent results. J. Phys. Chem. B. 113, 3785–3798 (2009)

    Google Scholar 

  3. Braides, A.: \(\Gamma \)-Convergence for Beginners, Volume 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002)

  4. Braides, A., Truskinovsky, L.: Asymptotic expansions by \(\Gamma \)-convergence. Contin. Mech. Thermodyn. 20, 21–62 (2008)

    Google Scholar 

  5. Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, Oxford (2005)

    Google Scholar 

  6. Choksi, R., Kohn, R.V.: Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 51, 259–289 (1998)

    Google Scholar 

  7. Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201, 61–79 (1999)

    Google Scholar 

  8. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity. 7, 633–696 (1994)

    Google Scholar 

  9. DeSimone, A., Knüpfer, H., Otto, F.: 2-d stability of the Néel wall. Calc. Var. PDE. 27, 233–253 (2006)

    Google Scholar 

  10. DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertotti, G., Mayergoyz, I.D. (eds.) The Science of Hysteresis, Volume 2 of Physical Modelling, Micromagnetics, and Magnetization Dynamics, Academic Press, Oxford (2006)

    Google Scholar 

  11. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Google Scholar 

  12. Evans, L.C., Gariepy, R.L.: Measure Theory and Fine Properties of Functions. Routledge, Boca Raton (2015)

    Google Scholar 

  13. Garel, T., Doniach, S.: Phase transitions with spontaneous modulations-the dipolar Ising ferromagnet. Phys. Rev. B. 26, 325–329 (1982)

    Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Google Scholar 

  15. Gioia, G., James, R.D.: Micromagnetics of very thin films. Proc. R. Soc. Lond. Ser. A. 453, 213–223 (1997)

    Google Scholar 

  16. Hohenberg, P.C., Krekhov, A.P.: An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns. Phys. Rep. 572, 1–42 (2015)

    Google Scholar 

  17. Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)

    Google Scholar 

  18. Jagla, E.A.: Numerical simulations of two-dimensional magnetic domain patterns. Phys. Rev. E. 70, 046204 (2004)

    Google Scholar 

  19. Kaplan, B., Gehring, G.A.: The domain structure in ultrathin magnetic films. J. Magn. Magn. Mater. 128, 111–116 (1993)

    Google Scholar 

  20. Knüpfer, H., Muratov, C.B.: Domain structure of bulk ferromagnetic crystals in applied fields near saturation. J. Nonlinear Sci. 21, 921–962 (2011)

    Google Scholar 

  21. Knüpfer, H., Muratov, C.B., Nolte, F.: Magnetic domains in thin ferromagnetic films with strong perpendicular anisotropy. Arch. Rat. Mech. Anal. (2018) (to appear)

  22. Kohn, R.V., Slastikov, V.V.: Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178, 227–245 (2005)

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Pergamon Press, London (1984)

    Google Scholar 

  24. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (2010)

    Google Scholar 

  25. Lu, J., Moroz, V., Muratov, C.B.: Orbital free density functional theory of out-of-plane charge screening in graphene. J. Nonlinear Sci. 25, 1391–1430 (2015)

    Google Scholar 

  26. Malozemoff, A.P., Slonczewski, J.C.: Magnetic Domain Walls in Bubble Materials. Academic Press, New York (1979)

    Google Scholar 

  27. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98, 123–142 (1987)

    Google Scholar 

  28. Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic ising-kac model to \(\Phi ^4_2\). Comm. Pure Appl. Math. (2016) (published online)

  29. Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulombic type. Ph. D. thesis, Boston University (1998)

  30. Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E. 66(066108), 1–25 (2002)

    Google Scholar 

  31. Muratov, C.B.: Droplet phases in non-local Ginzburg–Landau models with Coulomb repulsion in two dimensions. Comm. Math. Phys. 299, 45–87 (2010)

    Google Scholar 

  32. Muratov, C.B., Osipov, V.V., Vanden-Eijnden, E.: Persistence of magnetization configurations against thermal noise in thin ferromagnetic nanorings with four-fold magnetocrystalline anisotropy. J. Appl. Phys. 117, 17D118 (2015)

    Google Scholar 

  33. Ng, K.-O., Vanderbilt, D.: Stability of periodic domain structures in a two-dimensional dipolar model. Phys. Rev. B. 52, 2177–2183 (1995)

    Google Scholar 

  34. Otto, F., Viehmann, T.: Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy. Calc. Var. Partial Differ. Equ. 38, 135–181 (2010)

    Google Scholar 

  35. Roland, C., Desai, R.C.: Kinetics of quenched systems with long-range repulsive interactions. Phys. Rev. B. 42, 6658–6669 (1990)

    Google Scholar 

  36. Rosensweig, R.E.: Ferrohydrodynamics. Courier Dover Publications, New York (1997)

    Google Scholar 

  37. Seul, M., Andelman, D.: Domain shapes and patterns: the phenomenology of modulated phases. Science. 267, 476–483 (1995)

    Google Scholar 

  38. Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals: Physical Foundations. Springer, New York (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NSF via Grants DMS-1313687 and DMS-1614948. The author would like to thank V. Slastikov for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill B. Muratov.

Additional information

Communicated by A.Malchiodi.

Dedicated to V. V. Osipov on the occasion of his 77th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratov, C.B. A universal thin film model for Ginzburg–Landau energy with dipolar interaction. Calc. Var. 58, 52 (2019). https://doi.org/10.1007/s00526-019-1493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1493-4

Mathematics Subject Classification

Navigation