Skip to main content

Advertisement

Log in

Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we first study the universal inequality which is related to the eigenvalues of the fractional Laplacian \((-\Delta )^s|_{\Omega }\) for \(s>0\) and \(s\in \mathbb {Q}_+\). Here \(\Omega \subset \mathbb {R}^n\) is a bounded open domain, and \(\mathbb {Q}_+\) is the set of all positive rational numbers. Secondly, if \(s\in \mathbb {Q}_+\) and \(s\ge 1\) (in this case, the operator is also called the non-integer poly-Laplacian), then by this universal inequality and the variant of Chebyshev sum inequality, we can deduce the so-called Yang type inequality for the corresponding eigenvalue problem, which is the extension to the case of poly-Laplacian operators. Finally, we can get the upper bounds of the corresponding eigenvalues from the Yang type inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy processes: from probability to finance and quantum groups. Not. AMS 51(11), 1336–1347 (2004)

    MATH  Google Scholar 

  2. Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. Lond. Math. Soc. Lect. Note Ser. 273, 95–139 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Ashbaugh, M.S.: The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and HC Yang. In: Proceedings of the Indian Academy of Sciences-Mathematical Sciences, vol. 112(1). Springer (2002)

  4. Ashbaugh, M.S., Hermi, L.: A unified approach to universal inequalities for eigenvalues of elliptic operators. Pac. J. Math. 217(2), 201–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, H., Peng, L.: Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators. Calc. Var. Partial. Differ. Equ. 54(3), 2831–2852 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Qiao, R.H., Luo, P., Xiao, D.Y.: Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators. Sci. China Math. 57(11), 2235–2246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chi, C.Z., Qian, C.: Estimates for discrete spectrum of Laplacian operator with any order. J. China Univ. Sci. Tech. 20(3), 259–265 (1990)

    MathSciNet  Google Scholar 

  8. Cheng, Q.-M., Yang, H.: Estimates on eigenvalues of Laplacian. Math. Ann. 331(2), 445–460 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, Q.-M., Yang, H.: Inequalities for eigenvalues of a clamped plate problem. Trans. Am. Math. Soc. 358, 2625–2635 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, Q.-M., Yang, H.: Bounds on eigenvalues of Dirichlet Laplacian. Math. Ann. 337(1), 159–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Inequalities for eigenvalues of Laplacian with any order. Commun. Contemp. Math. 11(4), 639–655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, Q.-M., Wei, G.: A lower bound for eigenvalues of a clamped plate problem. Calc. Var. Partial. Differ. Equ. 42(3–4), 579–590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, Q.-M., Wei, G.: Upper and lower bounds for eigenvalues of the clamped plate problem. J. Differ. Equ. 255(2), 220–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, London (1968)

    MATH  Google Scholar 

  15. Hansson, A.M., Laptev, A.: Sharp spectral inequalities for the Heisenberg Laplacian. Groups Anal. Lond. Math. Soc. Lect. Note Ser. 354, 100–115 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Harrell II, E.M.: General bounds for the eigenvalues of Schrödinger operators. In: Schaefer, P.W. (ed.) Maximum Principles and Eigenvalue Problems in Partial Differential Equations. Essex, England: Longman House, and New York: Wiley (1988)

  17. Harrell II, E.M.: Some geometric bounds on eigenvalue gaps. Commun. Partial Differ. Equ. 18, 179–198 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harrell II, E.M., Stubbe, J.: On trace identities and universal eigenvalue estimates for some partial differential operators. Trans. Am. Math. Soc. 349(5), 1797–1809 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harrell II, E.M., Yolcu, S.Y.: Eigenvalue inequalities for Klein-Gordon operators. J. Funct. Anal. 256(12), 3977–3995 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hile, G.N., Protter, M.H.: Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J. 29(4), 523–538 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hile, G.N., Yeh, R.Z.: Inequalities for eigenvalues of the biharmonic operator. Pac. J. Math. 112(1), 115–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hook, S.M.: Domain-independent upper bounds for eigenvalues of elliptic operators. Trans. Am. Math. Soc. 318, 615–642 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hook, S.M.: Inequalities for eigenvalues of selfadjoint operators. Trans. Am. Math. Soc. 318(1), 237–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ilias, S., Makhoul, O.: Universal inequalities for the eigenvalues of a power of the Laplace operator. Manuscr. Math. 132(1–2), 75–102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Katzav, E.: Self-consistent expansion for the molecular beam epitaxy equation. Phys. Rev. E 65(3), 032103 (2002)

    Article  Google Scholar 

  26. Kroger, P.: Estimates for sums of eigenvalues of the Laplacian. J. Funct. Anal. 126(1), 217–227 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Levine, H.A., Protter, M.H., Payne, L.E.: Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity. Math. Methods Appl. Sci. 7(1), 210–222 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, P., Yau, S.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88(3), 309–318 (1983)

    Article  MATH  Google Scholar 

  29. Melas, A.: A lower bound for sums of eigenvalues of the Laplacian. Proc. Am. Math. Soc. 131(2), 631–636 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, L.: On the controllability of anomalous diffusions generated by the fractional Laplacian. Math. Control Signals Syst. 18(3), 260–271 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Payne, L.E., Pólya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, London (1998)

    MATH  Google Scholar 

  33. Pólya, G.: On the Eigenvalues of Vibrating Membranes (In Memoriam Hermann Weyl). Proc. Lond. Math. Soc. 3(1), 419–433 (1961)

    Article  MATH  Google Scholar 

  34. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  35. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  36. Thompson, C.J.: On the ratio of consecutive eigenvalues in \(N\)-dimensions. Stud. Appl. Math. 48(3), 281–283 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4), 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, F., Cao, L.: Estimates for eigenvalues of Laplacian operator with any order. Sci. China Ser. A Math. 50(8), 1078–1086 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yolcu, S.Y., Yolcu, T.: Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain. Commun. Contemp. Math. 15(3), 1250048 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The last version of this paper was done when the first author was visiting the Max-Planck Institute for Mathematics in the Sciences, Leipzig during August of 2016. We would like to thank Professor J. Jost (in Max-Planck Institute for Mathematics in the Sciences, Leipzig) for his invitation and support. We also thank the referee for the comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Additional information

Communicated by J. Jost.

This work is partially supported by the NSFC Grants 11631011 and 11626251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zeng, A. Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain. Calc. Var. 56, 131 (2017). https://doi.org/10.1007/s00526-017-1220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1220-y

Mathematics Subject Classification

Navigation