Skip to main content
Log in

A natural approach to the asymptotic mean value property for the p-Laplacian

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(1\le p\le \infty \). We show that a function \(u\in C(\mathbb R^N)\) is a viscosity solution to the normalized p-Laplace equation \(\Delta _p^n u(x)=0\) if and only if the asymptotic formula

$$\begin{aligned} u(x)=\mu _p(\varepsilon ,u)(x)+o(\varepsilon ^2) \end{aligned}$$

holds as \(\varepsilon \rightarrow 0\) in the viscosity sense. Here, \(\mu _p(\varepsilon ,u)(x)\) is the p-mean value of u on \(B_\varepsilon (x)\) characterized as a unique minimizer of

$$\begin{aligned} \Vert u-\lambda \Vert _{L^p(B_\varepsilon (x))} \end{aligned}$$

with respect to \(\lambda \in {\mathbb {R}}\). This kind of asymptotic mean value property (AMVP) extends to the case \(p=1\) previous (AMVP)’s obtained when \(\mu _p(\varepsilon ,u)(x)\) is replaced by other kinds of mean values. The natural definition of \(\mu _p(\varepsilon ,u)(x)\) makes sure that this is a monotonic and continuous (in the appropriate topology) functional of u. These two properties help to establish a fairly general proof of (AMVP), that can also be extended to the (normalized) parabolic p-Laplace equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arroyo, A., Llorente, J.G.: On the asymptotic mean value property for planar p-harmonic functions. Proc. Amer. Math. Soc. 144, 3859–3868 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonfiglioli, A., Lanconelli, E.: Subharmonic functions in sub-Riemannian settings. J. Eur. Math. Soc. 15, 387–441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  5. Falcone, M., Finzi Vita, S., Giorgi, T., Smits, R.G.: A semi-lagrangian scheme for the game \(p\)-laplacian via \(p\)-averaging. Appl. Numer. Math. 73, 63–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Giorgi, T., Smits, R.G.: Mean value property for \(p\)-harmonic functions. Proc. Am. Math. Soc. 140, 2453–2463 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hartenstine, D., Rudd, M.: Asymptotic statistical characterizations of p-harmonic functions of two variables. Rocky Mt. J. Math. 41, 493–504 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Juutinen, P., Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation. SIAM J. Math. Anal. 33, 699–717 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawohl, B., Manfredi, J.J., Parviainen, M.: Solutions of nonlinear PDEs in the sense of averages. J. Math. Pures Appl. 97, 173–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  11. Lindqvist, P., Manfredi, J.J.: On the mean value property for the \(p\)-Laplace equation in the plane. Proc. Am. Math. Soc. 144(1), 143–149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luiro, H., Parviainen, M., Saksman, E.: On the existence and uniqueness of \(p\)-harmonious functions. Differ. Integral Equ. 27, 201–216 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM J. Math. Anal. 42, 2058–2081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for p-harmonic functions. Proc. Am. Math. Soc. 138, 881–889 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manfredi, J.J., Parviainen, M., Rossi, J.D.: On the definition and properties of \(p\)-harmonious functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2), 215–241 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Noah, S.G.: The median of a continuous function. Real Anal. Exch. 33, 269–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rudd, M., Van Dyke, H.: Median values, \(1\)-harmonic functions, and functions of least gradient. Commun. Pure Appl. Anal. 12, 711–719 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shao, J.: Mathematical Statistics. Springer, New York (1999)

    MATH  Google Scholar 

  19. Stroock, D.W.: Probability Theory, an Analytic View. Cambridge UP, Cambridge (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported by a PRIN grant of the italian MIUR and the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Italian Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemitsu Wadade.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiwata, M., Magnanini, R. & Wadade, H. A natural approach to the asymptotic mean value property for the p-Laplacian. Calc. Var. 56, 97 (2017). https://doi.org/10.1007/s00526-017-1188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1188-7

Mathematics Subject Classification

Navigation