Skip to main content
Log in

Nondegeneracy of the ground state for quasilinear Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study least energy solutions for a class of quasilinear Schrödinger equations and we prove that the ground states are non degenerate. We also explain how close the proof of nondegeneracy and our argument are to the proof of uniqueness of the ground state up to symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi, S., Watanabe, T.: Uniqueness of the ground state solutions of quasilinear Schrödinger equations, (preprint)

  2. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \(\mathbf{R}^n\). Birkhauser, Basel-Boston-Berlin (2005)

  3. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations I. Arch. Rat. Mech. Anal. 82, 313–346 (1983)

    MATH  MathSciNet  Google Scholar 

  4. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Kluwer Academic Publishers Group, Dordrecht (1991)

    Book  MATH  Google Scholar 

  5. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Rat. Mech. Anal. 185(2), 185–200 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colin, M.: On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension. Comm. Partial Differ. Equ. 27, 325–354 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colin, M., Jeanjean, L., Squassina, M.: Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity 23, 1353–1385 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  Google Scholar 

  10. Del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149(1), 245–265 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1998)

    Google Scholar 

  12. Gladiali, F., Squassina, M.: Uniqueness of ground states for a class of quasi–linear elliptic equations. Adv. Nonlinear Anal. 1, 159–179 (2012)

  13. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for quasi-linear Schrödinger equations. Invent. Math. 158, 343–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^{p}=0\) in \(\mathbf{R}^N\). Arch. Rat. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ladyzhenskaya, O., Uraltseva, N.N.: Linear and Quasi-Linear Elliptic Equations. Translated from the Russian by Scripta Technica, Inc., Translation editor: Leon Ehrenpreis Academic Press, New York (1968)

  16. Lange, H., Poppenberg, M., Teismann, H.: Nash-Moser methods for the solution of quasi-linear Schrödinger equations. Comm. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    MATH  Google Scholar 

  18. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    MATH  Google Scholar 

  19. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Soliton solutions for quasi-linear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)

    Article  MATH  Google Scholar 

  20. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Solutions for quasi-linear Schrödinger equations via the Nehari method. Comm. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  21. Liu, J.-Q., Wang, Z.-Q.: Solitons solutions for quasi-linear Schrödinger equations. Proc. Am. Math. Soc. 131, 441–448 (2003)

    Article  MATH  Google Scholar 

  22. McLeod, K.: Uniqueness of positive radial solutions of \(\Delta u + f(u) = 0\) in \(\mathbf{R}^n\) II. Trans. Am. Math. Soc. 339(2), 495–505 (1993)

    MATH  MathSciNet  Google Scholar 

  23. Poppenberg, M.: On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension. J. Differ. Equ. 172, 83–115 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Poppenberg, M., Schmitt, K., Zhi-Qiang, W.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MATH  Google Scholar 

  25. Selvitella, A.: Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter. Nonlinear Anal. 74(5), 1731–1737 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Selvitella, A., Wang, Y.: Morawetz and interaction Morawetz estimates for quasilinear Schrödinger equations. J. Hyperbolic Differ. Equ. 9(4), 613–639 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sotomayor, J.: Smooth dependence of solutions of differential equations on initial data: a simple proof. Bull Braz. Math. Soc. 4(1), 55–59 (1973)

    Article  MathSciNet  Google Scholar 

  28. Tao, T.: Nonlinear dispersive equations: local and global analysis. In: Proceedings of BMS Regional Conference Series in Mathematics, Number 106 (2006)

Download references

Acknowledgments

We would like to thank Prof. Louis Jeanjean for having proposed me to study this problem. We would like also to thank him for a lot of useful comments, in particular for an important correction in the proof of Proposition 3.10. We would like to thank for the kind hospitality the Laboratoire de Mathématiques of the Université de Franche-Comté in Besancon, where this research started and in particular Dr.Nabile Boussaid. We thank Prof.Andrea Malchiodi for his advice and useful comments. We thank also the anonymous referee for his comments which led to an improvement of this manuscript. We thank also Victoria Ban for her kindness and constant help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Selvitella.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvitella, A. Nondegeneracy of the ground state for quasilinear Schrödinger equations. Calc. Var. 53, 349–364 (2015). https://doi.org/10.1007/s00526-014-0751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0751-8

Mathematics Subject Classification

Navigation