Skip to main content
Log in

An optimal constant for the existence of least energy solutions of a coupled Schrödinger system

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the following coupled Schrödinger system which has appeared as several models from mathematical physics:

$$\left\{\begin{array}{ll}-\Delta u + \lambda_1 u = \mu_1 u^3 + \beta uv^2, \quad x \in \mathbb{R}^N,\\-\Delta v + \lambda_2 v = \mu_2 v^3 + \beta vu^2, \quad x \in \mathbb{R}^N,\\u \geq 0, v \geq 0 \,\,{\rm in}\mathbb{R}^N, \quad u, v \in H^1(\mathbb{R}^N).\end{array}\right.$$

Here, N = 2, 3, and λ 1, λ 2μ 1μ 2 are all positive constants. In [Ambrosetti and Colorado in C R Acad Sci Paris Ser I 342:453–438, 2006], Ambrosetti and Colorado showed that, there exists β 0 > 0 such that this system has a nontrivial positive radially symmetric solution for any \({\beta \in (0, \beta_0)}\). Later in [Ikoma and Tanaka in Calc Var 40:449–480, 2011], Ikoma and Tanaka showed that solutions obtained by Ambrosetti and Colorado are indeed least energy solutions for any \({\beta \in (0, {\rm min}\{\beta_0, \sqrt{\mu_1\mu_2}\})}\) . Here, in case λ 1 = λ 2 and μ 1 ≠ μ 2, we prove the uniqueness of the positive solutions for min{μ 1μ 2} − β > 0 sufficiently small. In case λ 1 ≠ λ 2 and (λ 2λ 1)(μ 2 − μ 1) ≤ 0, we prove that \({\beta_0 < \sqrt{\mu_1\mu_2}}\) and β 0 is optimal, in the sense that this system has no nontrivial least energy solutions for \({\beta \in (\beta_0, \sqrt{\mu_1\mu_2})}\) . Moreover, there exists δ > 0 such that this system has no nontrivial nonnegative solutions for any \({\beta \in ({\rm min}\{\mu_1, \mu_2\} - \delta,\, \max\{\mu_1, \mu_2\} + \delta)}\) . This answers an open question of [Sirakov in Commun Math Phys 271:199–221, 2007] partially, and improves a result of [Sirakov in Commun Math Phys 271:199–221, 2007]. The asymptotic behavior of the least energy solutions is also studied as \({\beta \nearrow \beta_0}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhmediev N., Ankiewicz A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  2. Ambrosetti A., Colorado E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris Ser. I 342, 453–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti A., Colorado E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch T., Wang Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19, 200–207 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch T., Willem M.: Infinitely many radial solutions of a semilinear elliptic problem on \({\mathbb{R}^N}\) . Arch. Ration. Mech. Anal. 124, 261–276 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch T., Wang Z.-Q., Wei J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartsch T., Dancer N., Wang Z.-Q.: A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37, 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Busca J., Sirakov B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163, 41–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall M., Rabinowitz P.: Bifurcation form simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crandall M., Rabinowitz P.: Bifurcation, perturbation of simple eigenvalues and linearied stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen Z., Zou W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515–551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conti M., Teraccini S., Verzini G.: Nehari’s problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 871–888 (2002)

    Article  MATH  Google Scholar 

  13. Conti M., Teraccini S., Verzini G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198, 160–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dancer E., Wei J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaciton. Trans. Am. Math. Soc. 361, 1189–1208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Figueiredo D., Lopes O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 149–161 (2008)

    Article  MATH  Google Scholar 

  16. Esry B., Greene C., Burke J., Bohn J.: Hartree-Fock theory for double condesates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  Google Scholar 

  17. Gidas B., Spruck J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 35, 525–598 (1981)

    Article  MathSciNet  Google Scholar 

  18. Ikoma N., Tanaka K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 40, 449–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin T., Wei J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^N}\) , n ≤ 3. Commun. Math. Phys. 255, 629–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu Z., Wang Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10, 175–193 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Maia L., Montefusco E., Pellacci B.: Positive solutions for a weakly coupled nonlinear Schrödinger systems. J. Differ. Equ. 229, 743–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Palais R.: The principle of symmetric criticality. Commum. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sirakov B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^N}\) . Commun. Math. Phys. 271, 199–221 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Struwe M.: Variational Methods—Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (1996)

    MATH  Google Scholar 

  25. Wei J., Yao W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure. Appl. Anal. 11, 1003–1011 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zou.

Additional information

Communicated by P.Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Zou, W. An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. 48, 695–711 (2013). https://doi.org/10.1007/s00526-012-0568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0568-2

Mathematical Subject Classification

Navigation