Skip to main content
Log in

On the local structure of optimal measures in the multi-marginal optimal transportation problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider an optimal transportation problem with more than two marginals. We use a family of semi-Riemannian metrics derived from the mixed, second order partial derivatives of the cost function to provide upper bounds for the dimension of the support of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. (to appear)

  2. Brenier Y.: Decomposition polaire et rearrangement monotone des champs de vecteurs. C.R. Acad. Sci. Paris I Math. 305, 805–808 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Caffarelli, L.: Allocation maps with general cost funtions. In: Marcellini, P., Talenti, G., Vesintini, E. (eds.) Partial Differential Equations and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 177, pp. 29–35. Dekker, New York (1996)

  4. Carlier G.: On a class of multidimensional optimal transportation problems. J. Convex Anal. 10(2), 517–529 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Carlier G., Ekeland I.: Matching for teams. Econ. Theory 42(2), 397–418 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carlier G., Nazaret B.: Optimal transportation for the determinant. ESAIM Control Optim. Calc. Var. 14(4), 678–698 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chiappori P.-A., McCann R., Nesheim L.: Hedonic price equilibria, stable matching and optimal transport; equivalence, topology and uniqueness. Econ. Theory 42(2), 317–354 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gangbo, W.: Habilitation Thesis, Universite de Metz (1995)

  9. Gangbo W., McCann R.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gangbo W., Świȩch A.: Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. 51(1), 23–45 (1998)

    Article  Google Scholar 

  11. Heinich H.: Probleme de Monge pour n probabilities. C.R. Math. Acad. Sci. Paris 334(9), 793–795 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Kantorovich L.: On the translocation of masses. C.R. (Dokl.) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

    Google Scholar 

  13. Kellerer H.G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 399–432 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim Y.-H., McCann R.: Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. 12, 1009–1040 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Knott M., Smith C.C.: On a generalization of cyclic monotonicity and distances among random vectors. Linear Algebra Appl. 199, 363–371 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Levin V.: Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem. Set-Valued Anal. 7(1), 7–32 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. McCann, R., Pass, B., Warren, M.: Rectifiability of optimal transportation plans. Preprint available at arXiv:1003.4556v1

  18. Minty G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  19. Monge, G.: Memoire sur la theorie des deblais et de remblais. In: Histoire de l’Academie Royale des Sciences de Paris, avec les Memoires de Mathematique et de Physique pour la meme annee, pp. 666–704. (1781)

  20. Olkin I., Rachev S.T.: Maximum submatrix traces for positive definite matrices. SIAM J. Matrix Anal. Appl. 14, 390–397 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pass, B.: Uniqueness and Monge solutions in the multi-marginal optimal transportation problem. http://arxiv.org/abs/1007.0424

  22. Pass, B.: PhD Thesis, University of Toronto (2011)

  23. Rüschendorf L., Uckelmann L.: On optimal multivariate couplings. In: Benes, V., Stepan, I. (eds) Distributions with Given Marginals and Moment Problems (Prague, Czech Republic, 1996), pp. 261–274. Kluwer Academic publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  24. Rüschendorf L., Uckelmann L.: On the n coupling problem. J. Multivar. Anal. 81, 242–258 (2002)

    Article  MATH  Google Scholar 

  25. Smith C., Knott M.: On Hoeffding-Frechet bounds and cyclic monotone relations. J. Multivar. Anal. 40, 328–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Villani C.: Optimal transport: old and new, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Pass.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pass, B. On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. 43, 529–536 (2012). https://doi.org/10.1007/s00526-011-0421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0421-z

Mathematics Subject Classification (2000)

Navigation