Skip to main content
Log in

Optimal path planning for drones based on swarm intelligence algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recently, Drones and UAV research were becoming one of the interest topics for academia and industry, where it has been extensively addressed in the literature back the few years. Path planning of drones in an area with complex terrain or unknown environment and restricted by some obstacles is one of the most problems facing the operation of drones. The problem of path planning is not only limited to searching for an appropriate path from the starting point to the destination but also related to how to choose an ideal path among all available paths and provide a mechanism for collision avoidance. By considering how to construct the best path, several related issues need to be taken into account, that relate to safety, obstacle avoidance, response speed to overtake obstacles, etc. Swarm optimization algorithms have been used to provide intelligent modeling for drone path planning and enable to build the best path for each drone. This is done according to the planning and coordination dimensions among the swarm members. In this paper, we have discussed the features and characteristics of different swarm optimization algorithms such as ant colony optimization (ACO), fruit fly optimization algorithm (FOA), artificial bee colony (ABC), and particle swarm optimization (PSO). In addition, the paper provides a comprehensive summary related to the most important studies on drone path planning algorithms. We focused on analyzing the impact of the swarm algorithm and its performance in drone path planning. For that, the paper presented one of the most used algorithms and its models employed to improve the trajectory of drones that rely on swarm intelligence and its impact on the optimal path cost of drones. The results of performance analysis for the ACO algorithm in a 3D and 2D-dimensional environment are illustrated and discussed, and then the performance evaluation of the ACO is compared to the enhanced ACO algorithm. The proposed algorithm achieves fast convergence, accelerating the process of path planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Mohamed N, Al-Jaroodi J, Jawhar I, Idries A, Mohammed F (2020) Unmanned aerial vehicles applications in future smart cities. Technol Forecast Soc Change 153:119293

    Article  Google Scholar 

  2. Wu Y, Wu S, Hu X (2021) Multi-constrained cooperative path planning of multiple drones for persistent surveillance in urban environments. Complex Intell Syst. https://doi.org/10.1007/s40747-021-00300-5

    Article  Google Scholar 

  3. Alsolami F, Alqurashi FA, Hasan MK, Saeed RA, Abdel-Khalek S, BenIshak A (2021) Development of self-synchronized drones’ network using cluster-based swarm intelligence approach. IEEE Access 9:48010–48022. https://doi.org/10.1109/ACCESS.2021.3064905

    Article  Google Scholar 

  4. Kangunde V, Jamisola RS Jr, Theophilus EK (2021) A review on drones controlled in real-time. Int J Dyn Control. https://doi.org/10.1007/s40435-020-00737-5 (Epub ahead of print)

    Article  MathSciNet  Google Scholar 

  5. Alladi T, Chamola V, Sahu N, Guizani M (2020) Applications of blockchain in unmanned aerial vehicles: a review. Veh Commun 23:100249

    Google Scholar 

  6. Giordan D, Adams MS, Aicardi I et al (2020) The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull Eng Geol Environ 79:3437–3481. https://doi.org/10.1007/s10064-020-01766-2

    Article  Google Scholar 

  7. Mukherjee A, Saeed RA, Dutta S, Naskar MK (2017) Fault tracking framework for software-defined networking (SDN). In: Singhal C, De S (eds) Resource allocation in next-generation broadband wireless access networks. IGI Global, Hershey, pp 247–272. https://doi.org/10.4018/978-1-5225-2023-8.ch011

    Chapter  Google Scholar 

  8. Zhang T, Li Q, Zhang C et al (2017) Current trends in the development of intelligent unmanned autonomous systems. Front Inf Technol Electron Eng 18:68–85. https://doi.org/10.1631/FITEE.1601650

    Article  Google Scholar 

  9. Azar AT, Koubaa A, Ali Mohamed N, Ibrahim HA, Ibrahim ZF, Kazim M, Ammar A, Benjdira B, Khamis AM, Hameed IA, Casalino G (2021) Drone deep reinforcement learning: a review. Electronics 10(9):999. https://doi.org/10.3390/electronics10090999

    Article  Google Scholar 

  10. Besada JA, Bergesio L, Campaña I, Vaquero-Melchor D, López-Araquistain J, Bernardos AM, Casar JR (2018) Drone mission definition and implementation for automated infrastructure inspection using airborne sensors. Sensors (Basel) 18(4):1170. https://doi.org/10.3390/s18041170

    Article  Google Scholar 

  11. Yosuf RH, Mokhtar RA, Saeed RA, Alhumyani H, Abdel-Khalek S (2022) Scheduling algorithm for grid computing using shortest job first with time quantum. Intell Autom Soft Comput 31(1):581–590. https://doi.org/10.32604/iasc.2022.019928

    Article  Google Scholar 

  12. Cai Q, Long T, Wang Z, Wen Y, Kou J (2016) Multiple paths planning for UAVs using particle swarm optimization with sequential niche technique. In: 28th Chinese control and decision conference (CCDC)

  13. Goel U, Varshney S, Jain A, Maheshwari S, Shukla A (2018) Three-dimensional path planning for UAVs in dynamic environment using glow-worm swarm optimization. In: International conference on robotics and smart manufacturing (RoSMa2018) science direct. Procedia Computer Science, vol 133, pp 230–239

  14. Fu Z et al (2018) A heuristic evolutionary algorithm of UAV path planning. Wirel Commun Mob Comput 2018:11 (Article ID 2851964)

    Google Scholar 

  15. Depeng X, Ziying L, Mengshan L (2019) Research and simulation of UAV security strategy based on A*BC algorithm. Comput Sci Eng 9(1):1–5

    Google Scholar 

  16. Lin N, Tang J, Li X, Zhao L (2019) A novel improved bat algorithm in UAV path planning. Comput Mater Contin CMC 61(1):323–344

    Google Scholar 

  17. James S, Raheb R, Hudak A (2020) UAV swarm path planning. In: 2020 integrated communications navigation and surveillance conference (ICNS), pp 2G3-1–2G3-12

  18. Li B, Qi X, Yu B, Liu L (2020) Trajectory planning for UAV based on improved ACO algorithm. IEEE Access 8:2995–3006. https://doi.org/10.1109/ACCESS.2019.2962340

    Article  Google Scholar 

  19. Shao S, Peng Y, He C, Du Y (2020) Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans 97:415–430

    Article  Google Scholar 

  20. İlhan E, Kıymaz İO (2020) A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl Math Nonlinear Sci 5(1):171–188. https://doi.org/10.2478/amns.2020.1.00016

    Article  MathSciNet  Google Scholar 

  21. Xu C, Xu M, Yin C (2020) Optimized multi-UAV cooperative path planning under the complex confrontation environment. Elsevier, Amsterdam

    Book  Google Scholar 

  22. Kok KY, Rajendran P (2020) Enhanced particle swarm optimization for path planning of unmanned aerial vehicles. ECTI Trans Comput Inf Technol 14(1):67–78

    Google Scholar 

  23. Wang L et al (2020) An energy-balanced path planning algorithm for multiple ferrying UAVs based on GA. Int J Aerosp Eng 2020:15 (Article ID 3516149)

    Google Scholar 

  24. Chen J, Zhao H, Wang L (2021) Three-dimensional path planning of UAV based on adaptive particle swarm optimization algorithm. In: ISSMAS 2021. Journal of physics: conference series, vol 1846

  25. Phung MD, Ha QP (2021) Safety-enhanced UAV path planning with spherical vector based particle swarm optimization. arXiv:2104.10033v1 [cs.NE] 13 April 2021

  26. Xue Z, Liu X (2021) Trajectory planning of unmanned aerial vehicle based on the improved biogeography-based optimization algorithm. Adv Mech Eng 13(3):1–15

    Article  Google Scholar 

  27. Hodge VJ, Hawkins R, Alexander R (2021) Deep reinforcement learning for drone navigation using sensor data. Neural Comput Appl 33:2015–2033. https://doi.org/10.1007/s00521-020-05097-x

    Article  Google Scholar 

  28. de Assis RA, Pazim R, Malavazi MC, Petry PPC, de Assis LM, Venturino E (2020) A mathematical model to describe the herd behaviour considering group defence. Localiz: Appl Math Nonlinear Sci 5(1):11–24

    Google Scholar 

  29. Mosa AA, Abdalla AH, Saeed RA (2012) Evaluation of MANEMO route optimization schemes. J Netw Comput Appl 35(5):1454–1472. https://doi.org/10.1016/j.jnca.2012.02.001

    Article  Google Scholar 

  30. Popović M, Vidal-Calleja T, Hitz G et al (2020) An informative path planning framework for UAV-based terrain monitoring. Auton Robot 44:889–911. https://doi.org/10.1007/s10514-020-09903-2

    Article  Google Scholar 

  31. Alsaqour R, Abdelhaq M, Saeed RA, Al-Hubaishi M, Alsaqour O, Uddin M, Alahdal T (2014) Effect of mobility parameters on position information inaccuracy of position-based MANET routing protocol. Int J Wirel Mob Comput (Inderscience) 7(1):68–77. https://doi.org/10.1504/IJWMC.2014.058886

    Article  Google Scholar 

  32. Madridano Á, Al-Kaff A, Martín D, de la Escalera AA (2020) 3D trajectory planning method for UAVs swarm in building emergencies. Sensors (Basel) 20(3):642. https://doi.org/10.3390/s20030642

    Article  Google Scholar 

  33. Alsharif S, Saeed RA, Albagory Y (2022) An efficient HAPS cross-layer design to mitigate COVID-19 consequences. Intell Autom Soft Comput 31(1):43–59. https://doi.org/10.32604/iasc.2022.019493

    Article  Google Scholar 

  34. Majeed A, Lee S (2018) A fast global flight path planning algorithm based on space circumscription and sparse visibility graph for unmanned aerial vehicle. Electronics 7(12):375. https://doi.org/10.3390/electronics7120375

    Article  Google Scholar 

  35. Saeed RA, Mokhtar RA, Chebil J, Abdallah AH (2012) TVBDs coexistence by leverage sensing and geo-location database. In: 2012 international conference on computer and communication engineering (ICCCE), pp 33–39. https://doi.org/10.1109/ICCCE.2012.6271147

  36. Nurelmadina N, Hasan MK, Memon I, Saeed RA, ZainolAriffin KA, Ali ES, Mokhtar RA, Islam S, Hossain E, Hassan MA (2021) A systematic review on cognitive radio in low power wide area network for industrial IoT applications. Sustainability 13(1):338. https://doi.org/10.3390/su13010338

    Article  Google Scholar 

  37. Wang Y, Zhang G, Shi Z, Wang Q, Su J, Qiao H (2020) Finite-time active disturbance rejection control for marine diesel engine. Appl Math Nonlinear Sci 5(1):35–46. https://doi.org/10.2478/amns.2020.1

    Article  MathSciNet  Google Scholar 

  38. Rupa C, Midhunchak D, Hasan MK, Alhumyani H, Saeed RA (2021) Industry 5.0: Ethereum blockchain technology based DApp smart contract. Math Biosci Eng 18(5):7010–7027. https://doi.org/10.3934/mbe.2021349

    Article  Google Scholar 

  39. Wen L et al (2020) Collision-free trajectory planning for autonomous surface vehicle. arXiv:2005.09857v1

  40. Yang L, Qi J, Song D, Xiao J, Han J, Xia Y (2016) Survey of robot 3D path planning algorithms. J Control Sci Eng 2016:22. https://doi.org/10.1155/2016/7426913 (Article ID 7426913)

    Article  MathSciNet  MATH  Google Scholar 

  41. Eltahir AA, Saeed RA, Alawi MA (2013) An enhanced hybrid wireless mesh protocol (E-HWMP) protocol for multihop vehicular communications. In: 2013 international conference on computing, electrical and electronic engineering (ICCEEE), pp 1–8. https://doi.org/10.1109/ICCEEE.2013.6633899

  42. Alarcón V et al (2020) Procedures for the integration of drones into the airspace based on U-space services. Aerospace 7:128. https://doi.org/10.3390/aerospace7090128

    Article  Google Scholar 

  43. Schranz M, Umlauft M, Sende M, Elmenreich W (2020) Swarm robotic behaviors and current applications. Front Robot AI 7:36

    Article  Google Scholar 

  44. Li T, Yang W (2020) Solution to chance constrained programming problem in swap trailer transport organisation based on improved simulated annealing algorithm. Appl Math Nonlinear Sci 5(1):47–54. https://doi.org/10.2478/amns.2020.1.00005

    Article  MathSciNet  Google Scholar 

  45. Alfeo AL, Cimino MGCA, De Francesco N, Lazzeri A, Lega M, Vaglini G (2018) Swarm coordination of mini-UAVs for target search usingimperfectsensors. Intell Decis Technol 12(2):149–162. https://doi.org/10.3233/IDT-170317

    Article  Google Scholar 

  46. Alawi MA, Saeed RA, Hassan AA, Alsaqour RA (2014) Simplified gateway selection scheme for multi-hop relay vehicular ad hoc network. Int J Commun Syst 27(12):3855–3873. https://doi.org/10.1002/dac.2581

    Article  Google Scholar 

  47. del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195. https://doi.org/10.1109/TEVC.2007.896686

    Article  Google Scholar 

  48. Janga Reddy M, Nagesh Kumar D (2020) Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: a state-of-the-art review. H2Open J 3(1):135–188. https://doi.org/10.2166/h2oj.2020.128

    Article  Google Scholar 

  49. El-Shorbagy MA, Hassanien AE (2018) Particle swarm optimization from theory to applications. Int J Rough Sets Data Anal (IJRSDA) 5(2):1–24. https://doi.org/10.4018/IJRSDA.2018040101 (Accessed (May 04, 2021))

    Article  Google Scholar 

  50. Fan S-KS, Jen C-H (2019) An enhanced partial search to particle swarm optimization for unconstrained optimization. Mathematics 7:357. https://doi.org/10.3390/math7040357

    Article  Google Scholar 

  51. Ghorpade SN, Zennaro M, Chaudhari BS, Saeed RA, Alhumyani H, Abdel-Khalek S (2021) Enhanced differential crossover and quantum particle swarm optimization for IoT applications. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3093113

    Article  Google Scholar 

  52. Martínez-Ledesma M, Jaramillo Montoya F (2020) Performance evaluation of the particle swarm optimization algorithm to unambiguously estimate plasma parameters from incoherent scatter radar signals. Earth Planets Space 72:172. https://doi.org/10.1186/s40623-020-01297-w

    Article  Google Scholar 

  53. Ali ES, Hasan MK, Hassan R, Saeed RA, Hassan MB, Islam S, Nafi NS, Bevinakoppa S (2021) Machine learning technologies for secure vehicular communication in internet of vehicles: recent advances and applications. J Secur Commun Netw (SCN). https://doi.org/10.1155/2021/8868355

    Article  Google Scholar 

  54. Lu YX, Wang JS, Guo SS (2019) Solving path planning problem based on particle swarm optimization algorithm with improved inertia weights. IAENG Int J Comput Sci 46:4

    Google Scholar 

  55. Duan H, Zhang X, Wu J et al (2009) Max–min adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments. J Bionic Eng 6:161–173. https://doi.org/10.1016/S1672-6529(08)60113-4

    Article  Google Scholar 

  56. Ahmed ZE, Hasan MK, Saeed RA, Hassan R, Islam S, Mokhtar RA, Khan S, Akhtaruzzaman M (2020) Optimizing energy consumption for cloud internet of things. Front Phys 8:358. https://doi.org/10.3389/fphy.2020.00358

    Article  Google Scholar 

  57. Perez-Carabaza S, Besada-Portas E, Lopez-Orozco JA, de la Cruz JM (2018) Ant colony optimization for multi-UAV minimum time search in uncertain domains. Appl Soft Comput 62:789–806

    Article  Google Scholar 

  58. Tamura Y, Sakiyama T, Arizono I (2021) Ant colony optimization using common social information and self-memory. Complexity 2021:7. https://doi.org/10.1155/2021/6610670 (Article ID 6610670)

    Article  Google Scholar 

  59. Hu B, Sun Z, Hong H et al (2020) UAV-aided networks with optimization allocation via artificial bee colony with intellective search. J Wirel Commun Netw 2020:40. https://doi.org/10.1186/s13638-020-1659-y

    Article  Google Scholar 

  60. Chiu CL, Zhang J, Li M et al (2020) A study of environmental disclosures practices in Chinese energy industry. AJSSR 5:9. https://doi.org/10.1186/s41180-020-00036-1

    Article  Google Scholar 

  61. Annepu V, Rajesh A (2020) Implementation of an efficient artificial bee colony algorithm for node localization in unmanned aerial vehicle assisted wireless sensor networks. Wirel Pers Commun 114:2663–2680. https://doi.org/10.1007/s11277-020-07496-8

    Article  Google Scholar 

  62. Li B, Gong LG, Yang WL (2014) An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning. Sci World J 2014:10. https://doi.org/10.1155/2014/232704 (Article ID 232704)

    Article  Google Scholar 

  63. Han YQ, Li JQ, Liu Z, Liu C, Tian J (2020) Metaheuristic algorithm for solving the multi-objective vehicle routing problem with time window and drones. Int J Adv Rob Syst. https://doi.org/10.1177/1729881420920031

    Article  Google Scholar 

  64. Mao W, Lan HY, Li HR (2016) A new modified artificial bee colony algorithm with exponential function adaptive steps. Comput Intell Neurosci 2016:13. https://doi.org/10.1155/2016/9820294 (Article ID 9820294)

    Article  Google Scholar 

  65. Pang B, Song Y, Zhang C, Wang H, Yang R (2018) A modified artificial bee colony algorithm based on the self-learning mechanism. Algorithms 11(6):78. https://doi.org/10.3390/a11060078

    Article  MathSciNet  MATH  Google Scholar 

  66. Sheoran S, Mittal N, Gelbukh A (2020) Artificial bee colony algorithm in data flow testing for optimal test suite generation. Int J Syst Assur Eng Manag 11:340–349. https://doi.org/10.1007/s13198-019-00862-1

    Article  Google Scholar 

  67. Feng J, Meng M, Liu S, Zhang X, Yuan J, Zhang Z (2020) Prediction of Chinese automobile growing trend considering vehicle adaptability based on Cui–Lawson model. Appl Math Nonlinear Sci 5(2):367–376. https://doi.org/10.2478/amns.2020.2.00054

    Article  Google Scholar 

  68. Patel B, Patle B (2020) Analysis of firefly-fuzzy hybrid algorithm for navigation of quad-rotor unmanned aerial vehicle. Inventions 5:48. https://doi.org/10.3390/inventions5030048

    Article  Google Scholar 

  69. Fu Q et al (2015) A novel firefly algorithm based on improved learning mechanism. In: International conference on logistics engineering, management and computer science (LEMCS 2015)

  70. Henrio J, Deligne T, Nakashima T et al (2019) Route planning for multiple surveillance autonomous drones using a discrete firefly algorithm and a Bayesian optimization method. Artif Life Robotics 24:100–105. https://doi.org/10.1007/s10015-018-0454-x

    Article  Google Scholar 

  71. Ahmed KEB, Saeed RA, Mokhtar RA (2017) Real time CAMSHIFT tracking algorithm using TMS320DM6437 EVM. In: 2017 international conference on communication, control, computing and electronics engineering (ICCCCEE), pp 1–6. https://doi.org/10.1109/ICCCCEE.2017.7866698

  72. Yu X, Xu F (2020) Random inverse packet information and its acquisition. Appl Math Nonlinear Sci 5(2):357–366. https://doi.org/10.2478/amns.2020.2.00042

    Article  MathSciNet  Google Scholar 

  73. Cheng L et al (2020) A staged adaptive firefly algorithm for UAV charging planning in wireless sensor networks. Comput Commun 161:132–141

    Article  Google Scholar 

  74. Lu Y, Dong C, Wang Q (2017) Control allocation for aircraft with input constraints based on improved cuckoo search algorithm. Defence Technol 13(1):1–5

    Article  Google Scholar 

  75. Hu K-C, Tsai C-W, Chiang M-C, Yang C-S (2015) A multiple pheromone table based ant colony optimization for clustering. Math Probl Eng 2015:11. https://doi.org/10.1155/2015/158632 (Article ID 158632)

    Article  MATH  Google Scholar 

  76. Tao Y et al (2021) A mobile service robot global path planning method based on ant colony optimization and fuzzy control. Appl Sci 11:3605. https://doi.org/10.3390/app11083605

    Article  Google Scholar 

  77. Ahmed MZ, Hashim AHA, Khalifa OO, Saeed RA, Alsaqour RA, Alkali AH (2021) Connectivity framework for rendezvous and mobile producer nodes using NDN interest flooding. In: 2021 international congress of advanced technology and engineering (ICOTEN), pp 1–5.https://doi.org/10.1109/ICOTEN52080.2021.9493555

  78. Chen Y, Li N, Zhong X, Xie W (2019) Joint trajectory and scheduling optimization for the mobile UAV aerial base station: a fairness version. Appl Sci 9(15):3101. https://doi.org/10.3390/app9153101

    Article  Google Scholar 

  79. Pan JS, Liu JL, Hsiung SC (2019) Chaotic cuckoo search algorithm for solving unmanned combat aerial vehicle path planning problems. In: Proceedings of the 2019 11th international conference on machine learning and computing (ICMLC ‘19), pp 224–230. Association for Computing Machinery, New York, NY, USA

  80. Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2012) A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning. Sci World J 2012:11. https://doi.org/10.1100/2012/583973 (Article ID 583973)

    Article  Google Scholar 

  81. Cuevas E, Reyna-Orta A (2014) A cuckoo search algorithm for multimodal optimization. Sci World J 2014:20. https://doi.org/10.1155/2014/497514 (Article ID 497514)

    Article  Google Scholar 

  82. Pan JS, Song PC, Chu SC, Peng YJ (2020) Improved compact cuckoo search algorithm applied to location of drone logistics hub. Mathematics 8:333. https://doi.org/10.3390/math8030333

    Article  Google Scholar 

  83. Senan S, Hashim AA, Saeed RA, Hameed SA, Zeki AM, Daoud JI (2012) Route optimization scenario of a new scheme based on nested mobile network. In: 2012 international conference on computer and communication engineering (ICCCE), pp 717–721. https://doi.org/10.1109/ICCCE.2012.6271310

  84. Iglesias A et al (2018) Cuckoo search algorithm with Lévy flights for global-support parametric surface approximation in reverse engineering. Symmetry 10:58. https://doi.org/10.3390/sym10030058

    Article  Google Scholar 

  85. Zhao Y (2020) Analysis of trade effect in post-Tpp era: based on gravity model and Gtap model. Appl Math Nonlinear Sci 5(1):61–70. https://doi.org/10.2478/amns.2020.1.00007

    Article  MathSciNet  Google Scholar 

  86. Zhang Z, Wu J, Dai J, He C (2020) A novel real-time penetration path planning algorithm for stealth UAV in 3D complex dynamic environment. IEEE Access 8:122757–122771. https://doi.org/10.1109/ACCESS.2020.3007496

    Article  Google Scholar 

Download references

Funding

This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-78-305-1442). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, R.A., Omri, M., Abdel-Khalek, S. et al. Optimal path planning for drones based on swarm intelligence algorithm. Neural Comput & Applic 34, 10133–10155 (2022). https://doi.org/10.1007/s00521-022-06998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-06998-9

Keywords

Navigation