Skip to main content
Log in

Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia

  • S.I.: AI-based e-diagnosis
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Feature extraction plays an important role in arrhythmia classification, and successful arrhythmia classification generally depends on ECG feature extraction. This paper proposed a feature extraction method combining traditional approaches and 1D-CNN aiming to find the optimal feature set to improve the accuracy of arrhythmia classification. The proposed method is verified by using the MIT-BIH arrhythmia benchmark database. It is found that the features extracted by 1D-CNN and discrete wavelet transform form the optimal feature set with the average classification accuracy up to 98.35%, which is better than the latest methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brenyo A, Aktas MK (2014) Review of complementary and alternative medical treatment of arrhythmias. Am J Cardiol 113(5):897–903

    Article  Google Scholar 

  2. Gravina R, Fortino G (2016) Automatic methods for the detection of accelerative cardiac defense response. IEEE Trans Affect Comput 7(3):286–298

    Article  Google Scholar 

  3. Tahir S, Raja MM, Razzaq N, Mirza A, Khan WZ, Kim SW, Zikria YB (2021) Extended Kalman Filter-Based power line interference canceller for electrocardiogram signal. Big Data. https://doi.org/10.1089/big.2021.0043

    Article  Google Scholar 

  4. Uyar A, Gurgen F (2007) Arrhythmia classification using serial fusion of support vector machines and logistic regression. In: 2007 4th IEEE workshop on intelligent data acquisition and advanced computing systems: technology and applications. IEEE

  5. Llamedo M, Martínez JP (2010) Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans Biomed Eng 58(3):616–625

    Article  Google Scholar 

  6. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  7. Zhang Y et al (2018) PEA: Parallel electrocardiogram-based authentication for smart healthcare systems. J Netw Comput Appl 117:10–16

    Article  Google Scholar 

  8. De Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51(7):1196–1206

    Article  Google Scholar 

  9. Tateno K, Glass L (2001) Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Med Biol Eng Compu 39(6):664–671

    Article  Google Scholar 

  10. Lin C-C, Yang C-M (2014) Heartbeat classification using normalized RR intervals and morphological features. Mathe Probl Eng 2014

  11. Zhou Q (2009) The electrocardiogram classification research on electrocardiogram RR interval variation. In: 2009 second international symposium on computational intelligence and design. vol 2. IEEE

  12. Kutlu Y, Kuntalp D (2012) Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput Methods Programs Biomed 105(3):257–267

    Article  Google Scholar 

  13. Das MK, Ghosh DK, Ari S (2013) Electrocardiogram (ECG) signal classification using s-transform, genetic algorithm and neural network. In: 2013 IEEE 1st international conference on condition assessment techniques in electrical systems (CATCON). IEEE

  14. Uslu E, Bilgin G (2012) Exploiting locality based Fourier transform for ECG signal diagnosis. Int Conf Appl Electr, 323–326.

  15. Raj S, Ray KC (2017) ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans Instrum Meas 66(3):470–478

    Article  Google Scholar 

  16. Gumaei A, Al-Rakhami M, Hassan MM, Alamri A, Alhussein M, Razzaque MA, Fortino G (2020) A deep learning-based driver distraction identification framework over edge cloud. Neural Comput Appl, 1–16

  17. Piccialli F, Di Somma V, Giampaolo F, Cuomo S, Fortino G (2021) A survey on deep learning in medicine: Why, how and when? Inf Fus 66:111–137

    Article  Google Scholar 

  18. Liang W, Zhang D, Lei X, Tang M, Li K, Zomaya A (2020) Circuit copyright blockchain: blockchain-based homomorphic encryption for IP circuit protection. In: IEEE transactions on emerging topics in computing, https://doi.org/10.1109/TETC.2020.2993032

  19. Ravì D et al (2016) Deep learning for health informatics. IEEE J Biomed Health informatics 21(1):4–21

    Article  Google Scholar 

  20. Selvanambi R, Natarajan J, Karuppiah M, Islam SH, Hassan MM, Fortino G (2020) Lung cancer prediction using higher-order recurrent neural network based on glowworm swarm optimization. Neural Comput Appl 32(9):4373–4386

    Article  Google Scholar 

  21. Lu W, Hou H, Chu J (2018) Feature fusion for imbalanced ECG data analysis. Biomed Signal Process Control 41:152–160

    Article  Google Scholar 

  22. Li Z, Zhou D, Wan L et al (2020) Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J Electrocardiol 58:105–112

    Article  Google Scholar 

  23. Mondejarguerra VM et al. (2019) Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed Signal Process Control

  24. Kiranyaz S, Ince T, Gabbouj M (2015) Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63(3):664–675

    Article  Google Scholar 

  25. Golrizkhatami Z, Acan A (2018) ECG classification using three-level fusion of different feature descriptors. Expert Syst Appl 114:54–64

    Article  Google Scholar 

  26. Ye C, Vijaya Kumar BVK, Coimbra MT (2012) Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng 59(10):2930–2941

    Article  Google Scholar 

  27. Prasad GK, Sahambi JS (2003) Classification of ECG arrhythmias using multi-resolution analysis and neural networks. IEEE Region 10 Conf, 227–231

  28. Kim M, Ko H, Pan SB (2019) A study on user recognition using 2D ECG based on ensemble of deep convolutional neural networks. J Ambient Intell Human Comput, 1–9

  29. Ortin S et al. (2019) Automated real-time method for ventricular heartbeat classification. Comput Methods Programs Biomed, 1–8

  30. Martis RJ, Acharya UR, Min LC (2013) ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Process Control 8(5):437–448

    Article  Google Scholar 

  31. Strobach P (1995) Single section least squares adaptive notch filter. IEEE Trans Signal Process 43(8):2007–2010

    Article  Google Scholar 

  32. Łȩski J, Henzel N (2005) ECG baseline wander and powerline interference reduction using nonlinear filter bank. Signal Process 85(4):781–793

    Article  MATH  Google Scholar 

  33. Barros AK, Mansour A, Ohnishi N (1998) Removing artifacts from electrocardiographic signals using independent components analysis. Neurocomputing 22(1):173–186

    Article  MATH  Google Scholar 

  34. Ziarani AK, Konrad A (2002) A nonlinear adaptive method of elimination of power line interference in ECG signals. IEEE Trans Biomed Eng 49(6):540–547

    Article  Google Scholar 

  35. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  36. Haykin S (2002) Adaptive Filter Theory

  37. Martis RJ et al (2014) Computer aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation. Biomed siGnal Process Control 13:295–305

    Article  Google Scholar 

  38. LeCun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  39. Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, Berlin, Heidelberg

  40. Ciresan DC et al. (2011) Flexible, high performance convolutional neural networks for image classification. In: Twenty-Second international joint conference on artificial intelligence

  41. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. bmvc. vol 1. No. 3

  42. Oh SL et al (2018) Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med 102:278–287

    Article  Google Scholar 

  43. Duda, RO, Hart PE, Stork DG (2004) Pattern classification. Pattern classification. Wiley

  44. Wang J-S et al (2013) ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 116:38–45

    Article  Google Scholar 

  45. Shoohi LM, Saud JH (2020) Dcgan for handling imbalanced malaria dataset based on over-sampling technique and using cnn. Medico Legal Update 20(1):1079–1085

    Google Scholar 

  46. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  47. Zubair, M, Kim J, Yoon C (2016) An automated ECG beat classification system using convolutional neural networks. In: 2016 6th international conference on IT convergence and security (ICITCS). IEEE

  48. Park J, Lee K, Kang K (2013) Arrhythmia detection from heartbeat using k-nearest neighbor classifier. In: 2013 IEEE international conference on bioinformatics and biomedicine. IEEE

  49. Acharya UR et al (2017) A deep convolutional neural network model to classify heartbeats. Computers in Biol Med 89:389–396

    Article  Google Scholar 

  50. Xia Y et al (2018) "An automatic cardiac arrhythmia classification system with wearable electrocardiogram. IEEE Access 6:16529–16538

    Article  Google Scholar 

  51. Zhang Z et al (2014) Heartbeat classification using disease-specific feature selection. Comput Biol Med 46(2014):79–89

    Article  Google Scholar 

  52. Ince T, Kiranyaz S (2009) Gabbouj M (2009) A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 56(5):1415–1426

    Article  Google Scholar 

  53. Zikria YB, Afzal MK, Kim SW, Marin A, Guizani M (2020) Deep learning for intelligent IoT: Opportunities, challenges and solutions. Deep learning for intelligent IoT: Opportunities, challenges and solutions, Computer Communications, vol 164, pp 50–53

  54. Qadri YA, Nauman A, Zikria YB, Vasilakos AV, Kim SW (2020) The future of healthcare internet of things: a survey of emerging technologies. IEEE Commun Surv Tutor 22(2):1121–1167

    Article  Google Scholar 

  55. Islam SM, Lloret J, Zikria YB (2021) Internet of Things (IoT)-based wireless health: enabling technologies and applications. Electr J 10(2):148

    Google Scholar 

  56. Bhavsar KA, Singla J, Al-Otaibi YD, Song O, Zikria YB et al (2021) Medical diagnosis using machine learning: a statistical review. Comput Mater Continua 67(1):107–125

    Article  Google Scholar 

  57. Andreoli A, Gravina R, Giannantonio R, Pierleoni P, Fortino G (2010) SPINE-HRV: A BSN-based toolkit for heart rate variability analysis in the time-domain. Wearable and autonomous biomedical devices and systems for smart environment. Springer, Berlin, Heidelberg, 369–389

  58. Fortino G, Parisi D, Pirrone V, Di Fatta G (2014) BodyCloud: a SaaS approach for community body sensor networks. Futur Gener Comput Syst 35:62–79

    Article  Google Scholar 

  59. Fortino G, Galzarano S, Gravina R, Li W (2015) A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inf Fus 22:50–70

    Article  Google Scholar 

  60. Gravina R, Alinia P, Ghasemzadeh H, Fortino G (2017) Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf Fus 35:68–80

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the King Saud University, Riyadh, Saudi Arabia through Researchers Supporting Project number RSP-2021/18. The work was also supported by the Xiamen science and technology project (3502Z20183047), China Education and research network (NGII20160201), China Postdoctoral Science Foundation (2018M643256), the Fund Project of science and technology development center of the Ministry of Education(2018A01032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Cui or Mohammad Mehedi Hassan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Wang, L., He, X. et al. Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia. Neural Comput & Applic 35, 16073–16087 (2023). https://doi.org/10.1007/s00521-021-06487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06487-5

Keywords

Navigation