Skip to main content
Log in

Selfish node detection in ad hoc networks based on fuzzy logic

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Generally, the ad hoc networks work correctly only if all nodes cooperate in the routing and forwarding of the packets. However, in some cases, selfish nodes are hesitated to share the resources with their neighbors and attempt to preserve their own assets, since splitting nodes into two distinct groups including absolute cooperator and absolute selfish and avoiding the selfish nodes group in network activities will be degraded network quality of service. In this paper, we propose a novel fuzzy-based selfish node detection approach for ad hoc networks that operates based on the social network principles. In the social-based proposed approach, the nodes’ status will be determined by three variables, i.e., hop count (H.C.), residual energy (Re-En.), and cooperation history (Co-h.), through fuzzy interface process to prevent the isolating of the likely selfish nodes from the network and maintain more active node in the network as possible. The MobEmu tool is used to evaluate the effectiveness of the proposed approach in terms of the hit rate, delivery latency, delivery cost, and average hop count. The simulation results reveal that the proposed approach has a significant improvement in contrast to counterparts using UPB 2011 and UPB 2012 traces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Younis MF, Ozer SZ (2006) Wireless ad hoc networks: technologies and challenges. Wirel Commun Mob Comput 6:889–892. https://doi.org/10.1002/wcm.449

    Article  Google Scholar 

  2. Haas ZJ, Deng J, Liang B et al (2003) Wireless ad hoc networks. Wiley Encycl Telecommun. https://doi.org/10.1002/0471219282.eot185

    Article  Google Scholar 

  3. Gandhi C, Arya V (2014) A survey of energy-aware routing protocols and mechanisms for mobile ad hoc networks. Springer, New Delhi, pp 111–117

    Google Scholar 

  4. Vatankhah Ayda, Babaie Shahram (2018) An optimized bidding-based coverage improvement algorithm for hybrid wireless sensor networks. Comput Electr Eng 65:1–17. https://doi.org/10.1016/j.compeleceng.2017.12.031

    Article  Google Scholar 

  5. Nikoletseas S, Yang Y, Georgiadis A (eds) (2016) Wireless power transfer algorithms, technologies and applications in ad hoc communication networks. Springer, New York. https://doi.org/10.1007/978-3-319-46810-5

    Book  Google Scholar 

  6. Babaie S, Khosrohosseini A, Khadem-Zadeh A (2013) A new self-diagnosing approach based on petri nets and correlation graphs for fault management in wireless sensor networks. J Syst Archit 59:582–600. https://doi.org/10.1016/j.sysarc.2013.06.004

    Article  Google Scholar 

  7. Woungang I, Dhurandher SK, Anpalagan A, Vasilakos AV (eds) (2013) Routing in opportunistic networks. Springer, New York. https://doi.org/10.1007/978-1-4614-3514-3

    Book  MATH  Google Scholar 

  8. Kumar S, Dutta K, Sharma G (2016) A detailed survey on selfish node detection techniques for mobile ad hoc networks. In: 2016 Fourth international conference on parallel, distributed and grid computing. IEEE, pp 122–127

  9. Lei T, Wang S, Li J et al (2016) Detecting and preventing selfish behaviour in mobile ad hoc network. J Supercomput 72:3156–3168. https://doi.org/10.1007/s11227-015-1561-2

    Article  Google Scholar 

  10. Lin H, Hu J, Tian Y et al (2017) Toward better data veracity in mobile cloud computing: a context-aware and incentive-based reputation mechanism. Inf Sci (Ny) 387:238–253. https://doi.org/10.1016/j.ins.2016.12.031

    Article  Google Scholar 

  11. Dhurandher SK, Kumar A, Obaidat MS (2017) Cryptography-based misbehavior detection and trust control mechanism for opportunistic network systems. IEEE Syst J PP:1–12. https://doi.org/10.1109/jsyst.2017.2720757

    Article  Google Scholar 

  12. Ram Prabha V, Latha P (2017) Fuzzy trust protocol for malicious node detection in wireless sensor networks. Wirel Pers Commun 94:2549–2559. https://doi.org/10.1007/s11277-016-3666-1

    Article  MATH  Google Scholar 

  13. Jedari B, Liu L, Qiu T et al (2017) A game-theoretic incentive scheme for social-aware routing in selfish mobile social networks. Future Gener Comput Syst 70:178–190. https://doi.org/10.1016/j.future.2016.06.020

    Article  Google Scholar 

  14. Gopal DG, Saravanan R (2016) Selfish node detection based on evidence by trust authority and selfish replica allocation in DANET. Int J Inf Commun Technol 9:473–491. https://doi.org/10.1504/IJICT.2016.079961

    Article  Google Scholar 

  15. Bounouni M, Bouallouche-Medjkoune L (2016) A hybrid stimulation approach for coping against the malevolence and selfishness in mobile ad hoc network. Wirel Pers Commun 88:255–281. https://doi.org/10.1007/s11277-015-3104-9

    Article  Google Scholar 

  16. Yasmin S, Qayyum A, Bin Rais RN (2017) Cooperation in opportunistic networks: an overlay approach for destination-dependent utility-based schemes. Arab J Sci Eng 42:467–482. https://doi.org/10.1007/s13369-016-2253-9

    Article  Google Scholar 

  17. Kaushik R, Singhai J (2015) Enhanced node cooperation technique for outwitting selfish nodes in an ad hoc network. IET Netw 4:148–157. https://doi.org/10.1049/iet-net.2013.0103

    Article  Google Scholar 

  18. Samian N, Seah WKG, Zukarnain ZA et al (2016) Recharge-as-Reward mechanism to incentivize cooperative nodes in mobile ad hoc networks. In: 2016 IEEE 41st conference on local computer networks. IEEE, pp 535–538

  19. Subramaniyan S, Johnson W, Subramaniyan K (2014) A distributed framework for detecting selfish nodes in MANET using Record- and Trust-Based Detection (RTBD) technique. EURASIP J Wirel Commun Netw 2014:1–10. https://doi.org/10.1186/1687-1499-2014-205

    Article  Google Scholar 

  20. Bigwood G, Henderson T (2011) IRONMAN: using social networks to add incentives and reputation to opportunistic networks. In: 2011 IEEE third international conference on privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom). IEEE, pp 65–72

  21. Javidi MM, Baseri MV (2017) Fuzzy selfish detection ad hoc on-demand distance vector routing protocol (FSDAODV). J Comput Sci Comput Math 7:7–12. https://doi.org/10.20967/jcscm.2017.01.002

    Article  Google Scholar 

  22. Ciobanu R-I, Dobre C, Dascălu M et al (2014) SENSE: a collaborative selfish node detection and incentive mechanism for opportunistic networks. J Netw Comput Appl 41:240–249. https://doi.org/10.1016/j.jnca.2014.01.009

    Article  Google Scholar 

  23. Seising R, Trillas E, Kacprzyk J (eds) (2015) Towards the future of fuzzy logic. Springer, New York. https://doi.org/10.1007/978-3-319-18750-1

    Book  MATH  Google Scholar 

  24. Meier A, Portmann E, Stoffel K, Terán L (2017) The application of fuzzy logic for managerial decision making processes. Springer, New York. https://doi.org/10.1007/978-3-319-54048-1

    Book  Google Scholar 

  25. Jung K, Lee J-Y, Jeong H-Y (2017) Improving adaptive cluster head selection of teen protocol using fuzzy logic for WMSN. Multimed Tools Appl 76:18175–18190. https://doi.org/10.1007/s11042-016-4190-8

    Article  Google Scholar 

  26. Sahaaya Arul Mary SA, Gnanadurai JB (2017) Enhanced zone stable election protocol based on fuzzy logic for cluster head election in wireless sensor networks. Int J Fuzzy Syst 19:799–812. https://doi.org/10.1007/s40815-016-0181-1

    Article  Google Scholar 

  27. Das Adhikary DR, Mallick DK (2017) A congestion aware, energy efficient, on demand fuzzy logic based clustering protocol for multi-hop wireless sensor networks. Wirel Pers Commun. https://doi.org/10.1007/s11277-017-4581-9

    Article  Google Scholar 

  28. Tabatabaei S, Hosseini F (2016) A fuzzy logic-based fault tolerance new routing protocol in mobile ad hoc networks. Int J Fuzzy Syst 18:883–893. https://doi.org/10.1007/s40815-015-0119-z

    Article  MathSciNet  Google Scholar 

  29. Abualhaj MM, Abu-Shareha AA, Al-Tahrawi MM (2016) FLRED: an efficient fuzzy logic based network congestion control method. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2730-9

    Article  Google Scholar 

  30. Ramakrishnan S, Devaraju S (2017) Attack’s feature selection-based network intrusion detection system using fuzzy control language. Int J Fuzzy Syst 19:316–328. https://doi.org/10.1007/s40815-016-0160-6

    Article  Google Scholar 

  31. Feeney LM, Marie L (2001) An energy consumption model for performance analysis of routing protocols for mobile ad hoc networks. Mob Netw Appl 6:239–249. https://doi.org/10.1023/A:1011474616255

    Article  MATH  Google Scholar 

  32. Van Broekhoven E, De Baets B (2006) Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy Sets Syst 157:904–918. https://doi.org/10.1016/J.FSS.2005.11.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Ciobanu RI, Dobre C, Cristea V, Al-Jumeily D (2012) Social aspects for opportunistic communication. In: 2012 11th International symposium on parallel and distributed computing. IEEE, pp 251–258

  34. Firdose S, Lopes L, Moreira W et al (2017) CRAWDAD dataset copelabs/usense (v. 2017-01-27). https://doi.org/10.15783/c7d885

  35. Ciobanu RI, Dobre C (2012) CRAWDAD dataset upb/mobility2011 (v. 2012-06-18). CRAWDAD Wirel Netw data Arch. https://doi.org/10.15783/c7730v

    Article  Google Scholar 

  36. Cabero JM, Molina V, Urteaga I et al (2012) CRAWDAD dataset tecnalia/humanet (v. 2012-06-12). CRAWDAD Wirel Netw Data Arch. https://doi.org/10.15783/c74g60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Babaie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani, H., Babaie, S. Selfish node detection in ad hoc networks based on fuzzy logic. Neural Comput & Applic 31, 6079–6090 (2019). https://doi.org/10.1007/s00521-018-3431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3431-3

Keywords

Navigation