Skip to main content

Advertisement

Log in

Discrete greedy flower pollination algorithm for spherical traveling salesman problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper deals with the spherical traveling salesman problem. In this problem, all cities are located on the surface of a sphere and the cities must be visited exactly once in a tour. We propose a new and effective meta-heuristic algorithm with greedy behavior for solving this problem. The proposed algorithm is based on the discrete flower pollination algorithm, which is a bio-inspired meta-heuristic algorithm enhanced by order-based crossover, pollen discarding behavior and partial behaviors. To evaluate the proposed algorithm, it is compared with four effective existing algorithms (the genetic algorithm, two variants of the genetic algorithm and tabu search) on a set of available spherical traveling salesman instances. The results show the superiority of our algorithm in both solution quality and robustness of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Arora S (1999) Polynomial time approximation schemes for Euclidean travelling salesman and other geometric problems. J ACM 45(5):753–782

    Article  MATH  Google Scholar 

  2. Zhang WX, Korf RE (1996) A study of complexity transitions on the asymmetric travelling salesman problem. Artif Intell 81(1–2):223–239

    Article  Google Scholar 

  3. Rodriguez A, Ruiz R (2012) The effect of the asymmetry of road transportation networks on the travelling salesman problem. Comput Oper Res 39(7):1566–1576

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence planning. Robot Comput Integr Manuf 26(2):212–222

    Article  Google Scholar 

  5. Berman P, Karpinski M (2006) Approximation algorithm for TSP. In: SODA’06, Miami, pp 641–648

  6. Matail R (2010) Travelling salesman problem: an overview of applications, formulations, and solution approaches. Travel Salesm Probl Theory Appl. doi:10.5772/12909

    Google Scholar 

  7. Shi P, Jia S (2013) A hybrid artificial bee colony algorithm combined with simulated annealing algorithm for travelling salesman problem. In: IEEE 2013 International conference on information science and cloud computing companion (ISCC-C). doi:10.1109/ISCC-C.2013.13

  8. Tseng S-P (2010) A fast ant colony optimization algorithm for travelling salesman problem. Evol Comput. doi:10.1109/CEC.2010.5586153

    Google Scholar 

  9. Honda K, Nagata Y, Ono I (2013) A parallel genetic algorithm with edge assembly crossover for 100,000-city scale TSPs. In: IEEE 2013 IEEE congress on evolutionary computation (CEC), pp 1278–1285

  10. Duan Y, Sun Y (2009) A particle swarm optimization algorithm with ant search for solving travelling salesman problem. Int Conf Comput Intell Secur 11(14):137–141

    Google Scholar 

  11. Chaudhuri A, De K (2008) A study of travelling salesman problem using fuzzy self-organizing map. Ind Inf Syst. doi:10.5772/13270

    Google Scholar 

  12. Takahash S (2002) The SOM-TSP method for the there-dimension city location problem. In: Proceedings of the 9th international conference on neural information processing. doi:10.1109/ICONIP.2002.1201955

  13. Uğur A, Korukoğlu S, Çalışkan A et al (2009) Genetic algorithm based solution for TSP on a sphere. Math Comput Appl 14(3):219–228

    Google Scholar 

  14. Lomnitz C (1995) On the distribution of distances between random points on a sphere. Bull Seismol Soc Am 85:951–953

    Google Scholar 

  15. Gang W, Zhigang L (2011) Spherical travelling salesman problem constant and its experimental analysis. Appl Res Comput 28:4489–4491

    Google Scholar 

  16. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, lecture notes in computer science, vol 445, pp 240–249

  17. Yang XS, Karamanoglu M, He XS (2014) Flower pollination algorithm: a novel approach for multi-objective optimization. Eng Optim 46(9):1222–1237

    Article  MathSciNet  Google Scholar 

  18. Yang XS, Karamanoglu M, He XS (2013) Multiobjective flower algorithm for optimization. Procedia Comput Sci 18:861–868

    Article  Google Scholar 

  19. Sharawi M, Emary E, Saroit IA et al (2014) Flower pollination optimization algorithm for wireless sensor network lifetime global optimization. Int J Soft Comput Eng 4(3):54–59

    Google Scholar 

  20. Abdel-Raouf O, Abdel-Baset M, El-henawy I (2014) A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles. Int J Eng Trends Technol 7(3):126–132

    Article  Google Scholar 

  21. Zhou Y, Wang R, Luo Q (2016) Elite opposition-based flower pollination algorithm. Neurocomputing 188:294–310

    Article  Google Scholar 

  22. Zhou Y, Wang R (2016) An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int J Pattern Recognit Artif Intell 30(4):1659010

    Article  Google Scholar 

  23. Wang R, Zhou Y, Qiao S, Huang K (2016) Flower pollination algorithm with bee pollinator for cluster analysis. Inf Process Lett 116(1):1–14

    Article  Google Scholar 

  24. El-henawy I, Ismail M (2014) An improved chaotic flower pollination algorithm for solving large integer programming problems. Int J Digit Content Technol Its Appl 8(3):72–81

    Google Scholar 

  25. Wikipedia, Great circle. http://en.wikipedia.org/wiki/Great_circle.2012

  26. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, New York

    Book  Google Scholar 

  27. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao W-F, Liu S-Y (2012) A global best artificial bee colony algorithm for global optimization. J Comput Appl Math 236:2741–2753

    Article  MathSciNet  MATH  Google Scholar 

  29. Fiechter CN (1994) A parallel tabu search algorithm for large travelling salesman problems. Discrete Appl Math 51(3):243–267

    Article  MathSciNet  MATH  Google Scholar 

  30. Abdel-Basset M, Wang G-G, Sangaiah AK, Rushdy E (2017) Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimed Tools Appl. doi:10.1007/s11042-017-4803-x

    Google Scholar 

  31. Sangaiah AK, Thangavelu AK, Gao XZ, Anbazhagan N, Saleem Dur M (2015) An ANFIS approach for evaluation of team-level service climate in GSD projects using Taguchi-genetic learning algorithm. Appl Soft Comput 30:628–635

    Article  Google Scholar 

  32. Wang G-G, Cai X, Cui Z, Min G, Chen J (2017) High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans Emerg Top Comput. doi:10.1109/TETC.2017.2703784

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China under Grants Nos. 61463007, 61563008 and Project of the Guangxi Natural Science Foundation under Grant No. 2016GXNSFAA380264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, R., Zhao, C. et al. Discrete greedy flower pollination algorithm for spherical traveling salesman problem. Neural Comput & Applic 31, 2155–2170 (2019). https://doi.org/10.1007/s00521-017-3176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3176-4

Keywords

Navigation