Skip to main content
Log in

Adaptive fault-tolerant automatic train operation using RBF neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In order to accommodate actuator failures which are unknown in amplitude and time, adaptive fault-tolerant control schemes are proposed for automatic train operation system. Firstly a basic design scheme on the basis of direct adaptive control is considered. It is demonstrated that, when actuator failures occur, asymptotical speed and position tracking are guaranteed. Then a new user-friendly control scheme is proposed which can eliminate the undesirable chattering phenomenon, which is the defect of the previous method. Simulation results verify the effectiveness of established theoretical results that satisfactory speed tracking and position tracking can be guaranteed in the presence of uncertain actuator failures in automatic train operation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pascoe R, Eichorn N (2009) What is communication-based train control. IEEE Veh Technol Mag 4(4):16–21

    Article  Google Scholar 

  2. Dong H, Ning B, Cai B, Hou Z (2010) Automatic train control system development and simulation for high-speed railways. IEEE Circuits Syst Mag 10(2):6–18

    Article  Google Scholar 

  3. Chen X, Zhang Y, Huang H (2010) Train speed control algorithm based on PID controller and single-neuron PID controller. Proc Second WRI Glob Congr Intell Syst 1:107–110

    Google Scholar 

  4. Dong H, Gao B, Ning B, Zhang Y (2010) Fuzzy-PID soft switching speed control of automatic train operation system. Control Decis 25(5):794–796, 800

  5. Wang Y, Luo R, Yu Z, Ning B (2012) Study on ATO control algorithm with consideration of ATP speed limits. J Railw Soc 34(5):59–64

    Google Scholar 

  6. Luo R, Wang Y, Yu Z, Tang T (2012) Adaptive stopping control of urban rail vehicle. J Railw Soc 34(4):64–68

    Google Scholar 

  7. Yasunobu S, Miyamoto S, Ihara H (1983) Fuzzy control for automatic train operation system. In: Proceedings of 4th IFAC/IFIP/IFRS international conference on transportation systems, pp 33–39

  8. Yasunobu S, Miyamoto S, Takaoka T, Ohshima H (1984) Application of predictive fuzzy control to automatic train operation controller. Proc IECON 84:657–662

    Google Scholar 

  9. Chang C, Xu D (2000) Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system. IEE Proc Electr Power Appl 147(3):206–212

    Article  Google Scholar 

  10. Dong H, Gao S, Ning B, Li L (2013) Extended fuzzy logic controllers for high speed train. Neural Comput Appl 22(2):321–328

    Article  Google Scholar 

  11. Howlett P (1996) Optimal strategies for the control of a train. Automatica 32(4):519–532

    Article  MathSciNet  MATH  Google Scholar 

  12. Howlett P, Cheng J (1997) Optimal driving strategies for a train on a track with continuously varying gradient. J Aust Math Soc Ser B Electron 38:388–410

    Article  MathSciNet  MATH  Google Scholar 

  13. Howlett P, Milroy I, Pudney P (1994) Energy-efficient train control. Control Eng Pract 2(2):193–200

    Article  Google Scholar 

  14. Howlett P, Pudney P, Vu X (2009) Local energy minimization in optimal train control. Automatica 45(11):2692–2698

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu R, Golovitcher I (2003) Energy-efficient operation of rail vehicles. Transp Res Part A 37:917–932

    Google Scholar 

  16. Yang C, Sun Y (2001) Mixed \({\cal H {\cal _{2}}/{\cal H} \cal _{\infty }}\) cruise controller design for high speed train. Int J Control 74(9):905–920

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang C, Tang T, Luo R (2013) Study on iterative learning control in automatic train operation. J Railw Soc 35(3):48–52

    Google Scholar 

  18. Zhang X, Parisini T, Polycarpou MM (2004) Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach. IEEE Trans Autom Control 49(8):1259–1274

    Article  MathSciNet  Google Scholar 

  19. Gao X, Ovaska S, Wang X, Chow M (2008) A neural networks-based negative selection algorithm in fault diagnosis. Neural Comput Appl 17(1):91–98

    Article  Google Scholar 

  20. Zargany F, Shahbazian M, Rad H (2013) Multi-sensor fault tolerant measurement based on Tagaki–Sugeno fuzzy model. Neural Comput Appl. doi:10.1007/s00521-012-1328-0

  21. Wu Y, Sun F, Zheng J, Song Q (2010) A robust training algorithm of discrete-time MIMO RNN and application in fault tolerant control of robotic system. Neural Comput Appl 19(7):1013–1027

    Article  Google Scholar 

  22. Zhuan X, Xia X (2010) Fault-tolerant control of heavy-haul trains. Veh Syst Dyn 48(6):705–735

    Article  Google Scholar 

  23. Zhuan X, Xia X (2008) Speed regulation with measured output feedback in the control of heavy haul trains. Automatica 44(1):242–247

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao T, Xu H (2013) Fault-tolerant control of high-speed trains with uncertain parameters and actuator failures using control reallocation and adaptive control. J Inf Comput Sci 10(7):1959–1977

    Article  Google Scholar 

  25. Zhuan X, Xia X (2006) Cruise control scheduling of heavy haul trains. IEEE Trans Control Syst Technol 14(4):757–766

    Article  Google Scholar 

  26. Zhou K, Doyle J, Glover K (1995) Robust and optimal control. Prentice Hall, NJ

    Google Scholar 

  27. Polycarpou M (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Control 41(3):447–451

    Article  MathSciNet  MATH  Google Scholar 

  28. Khalil H (2001) Nonlinear systems, 3rd edn. Prentice Hall, NJ

    Google Scholar 

  29. Spong MW (1992) On the robust control of robot manipulators. IEEE Trans Autom Control 37(11):1782–1786

    Article  MathSciNet  MATH  Google Scholar 

  30. Dawson DM, Carroll JJ, Schneider M (1994) Integrator backstepping control of a brush DC motor turning a robotic load. IEEE Trans Control Syst Technol 2(3):233–244

    Article  Google Scholar 

  31. Ioannou P, Kokotovic PV (1983) Adaptive systems with reduced models, Lecture notes in control and information sciences. 47, Springer, New York

  32. Ioannou P, Kokotovic PV (1984) Instability analysis and improvement of robustness of adaptive control. Automatica 20(5):583–594

    Article  MathSciNet  MATH  Google Scholar 

  33. Ioannou P, Sun J (1996) Robust adaptive control. Prentice Hall, NJ

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported jointly by the Fundamental Research Funds for Central Universities (No. 2013JBZ007), National Natural Science Foundation of China (No. 61322307, No. 61304157, No. 61304196) and Beijing Jiaotong University Research Program (No. RCS2012ZZ003). Part of this work was completed while Mr. Shigen Gao was Visiting Research Student in University of Birmingham, and the financial support of China Scholarship Council is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigen Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Dong, H., Ning, B. et al. Adaptive fault-tolerant automatic train operation using RBF neural networks. Neural Comput & Applic 26, 141–149 (2015). https://doi.org/10.1007/s00521-014-1705-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1705-y

Keywords

Navigation