Skip to main content
Log in

Optimum mechanical behavior of calcium phosphate cement/hydroxyl group functionalized multi-walled carbon nanotubes/bovine serum albumin composite using metaheuristic algorithms

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Injectable calcium phosphate cements have been introduced as adjuncts to internal fixation for treating selected fractures. These cements harden without producing much heat, develop compressive strength, and are remodeled slowly in vivo. The main purpose of the cement is to fill voids in metaphyseal bone, thereby reducing the need for bone graft. However, such cements may also improve the holding strength around metal devices in osteoporotic bone. This paper presents the optimum mechanical behavior of calcium phosphate cement/hydroxyl group functionalized multi-walled carbon nanotubes/bovine serum albumin (CPC/MWCNT-OH/BSA) composites in terms of compressive strength using well-known metaheuristic optimizers. The process parameters studied were wt% of MWCNT-OH (0.2–0.5 wt%) and wt% of BSA (5–15 wt%). The obtained results from metaheuristic algorithms were compared with the results from the response surface methodology (RSM) in the literature. The results obtained from metaheuristic algorithms outperformed the results given by the RSM in terms of less error percentage and high compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fernandez E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM (1999) Calcium phosphate bone cements for clinical applications, part I: solution chemistry. J Mater Sci Mater Med 10:1169–1176

    Google Scholar 

  2. Brown WE, Chow LC (1985) Dental restorative cement pastes. US patent number 4,518,430, American Dental Association Health

  3. Lemaitre J, Mirtchi A, Mortier A (1987) Calcium phosphate cements for medical use: state of the art and perspectives of development. Silicates Ind 9–10:141–146

    Google Scholar 

  4. Constantz BR, Barr BM, Ison IC, Fulmer MT, Baker J, McKinney L et al (1998) Histological, chemical and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res 43(4):451–461

    Article  Google Scholar 

  5. Frankenburg EP, Goldstein SA, Bauer TW, Harris SA, Poser RD (1998) Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 80(8):1112–1115

    Google Scholar 

  6. Frayssinet P, Gineste L, Conte P, Fages J, Rouquet N (1998) Short-term implantation effects of a DCPD-Based calcium phosphate cement. Biomaterials 19:971–977

    Article  Google Scholar 

  7. Friedman CD, Costantino PD, Takagi S, Chow LC (1998) Bone source hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res Part B: Appl Biomater 43:428–432

    Article  Google Scholar 

  8. Schmit JP, Hollinger JO, Milan SB (1999) Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 57:1122–1127

    Article  Google Scholar 

  9. Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31S(4):D37–D47

    Article  Google Scholar 

  10. Lange GL, Donath K (1989) Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 10:121–125

    Article  Google Scholar 

  11. White AA, Best SM, Kinloch IA (2007) Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4(1):1–13

    Article  Google Scholar 

  12. Kealley C, Ben-Nissan B, van Riessen A, Elcombe M (2006) Development of carbon nanotube reinforced hydroxyapatite bioceramics. Key Eng Mater 309–311(1–2):597–600

    Article  Google Scholar 

  13. Combes C, Rey C, Freche M (1999) In vitro crystallization of octacalcium phosphate on type I collagen: influence of serum albumin. J Mater Sci Mater Med 10(3):153–160

    Article  Google Scholar 

  14. Burke EM, Guo Y, Colon L, Rahima M, Veis A, Nancollas GH (2000) Influence of polyaspartic acid and phosphophoryn on octacalcium phosphate growth kinetics. Colloids Surf B 17(1):49–57

    Article  Google Scholar 

  15. Chew KK, Low KL, Zein SHS, McPhail DS, Gerhardt LC, Roether JA et al (2011) Reinforcement of calcium phosphate cement with multiwalled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J Mech Behav Biomed Mater 4(3):331–339

    Article  Google Scholar 

  16. Sanchez N, Martinez M, Aracil J (1997) Selective esterification of glycerin to 1-glycerol monooleate: optimization studies. Ind Eng Chem Res 36(5):1529–1534

    Article  Google Scholar 

  17. Box GEP, Draper NR (1987) Empirical model-building and response surface. Wiley, New York

    Google Scholar 

  18. Maghsoud A, Amir AAN, Komeil G (2008) Response surface methodology and genetic algorithm in optimization of cement clinkering process. J Appl Sci 8(15):2732–2739

    Article  Google Scholar 

  19. Low KL, Tan SH, Zein SHS, McPhail DS, Boccaccini AR (2011) Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. Mater Des 32:3312–3319

    Article  Google Scholar 

  20. Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:513–623

    Article  MATH  MathSciNet  Google Scholar 

  21. Blum C, Andrea R (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308

    Article  Google Scholar 

  22. Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, UK

    Google Scholar 

  23. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, New York

    Book  Google Scholar 

  24. Glover F, Kochenberger GA (2003) Handbook of metaheuristics. Kluwer, Heidelberg

    MATH  Google Scholar 

  25. Areibi S, Moussa M, Abdullah H (2001) A comparison of genetic/memetic algorithms and other heuristic search techniques. In: ICAI 2001, Las VeGAs, Nevada

  26. Youssef H, Sait SM, Adiche H (2001) Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Eng Appl Artif Intell 14:167–181

    Article  Google Scholar 

  27. Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based optimization algorithms. Adv Eng Inf 19:43–53

    Article  Google Scholar 

  28. Giraud-Moreau L, Lafon P (2002) Comparison of evolutionary algorithms for mechanical design components. Eng Optim 34:307–322

    Article  Google Scholar 

  29. Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  30. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE IJCNN, Perth, Australia, 4:1942–1948

  31. Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. In: IEEE Sys. Man. Cybern., computational cybernetics and simulation, Orlando, FL, 5:4104–4108

  32. Dong Y, Tang J, Xu B, Wang D (2005) An application of swarm optimization to nonlinear programming. Comput Math Appl 49:1655–1668

    Article  MATH  MathSciNet  Google Scholar 

  33. Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inform Sci 176:937–971

    Article  MATH  MathSciNet  Google Scholar 

  34. Fleischer M (1995) Simulated annealing: past, present, and future. In: Arlington, VA, USA, IEEE, 155–161

  35. Kirkpatrick S, Gellat JRCD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MATH  MathSciNet  Google Scholar 

  36. Davidson R, Harel D (1996) Drawing graphs nicely using simulated annealing. ACM T. Graphics 15:301–331

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge for the Ministry of Higher Education of Malaysia and the University of Malaya, Kuala Lumpur, Malaysia for the financial support under UM.TNC2/IPPP/UPGP/628/6/ER013/2011A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardeshir Bahreininejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadollah, A., Bahreininejad, A., Hamdi, M. et al. Optimum mechanical behavior of calcium phosphate cement/hydroxyl group functionalized multi-walled carbon nanotubes/bovine serum albumin composite using metaheuristic algorithms. Neural Comput & Applic 24, 193–200 (2014). https://doi.org/10.1007/s00521-012-1219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1219-4

Keywords

Navigation