Skip to main content
Log in

Determination of the impact indicators of electromagnetic interferences on computer information systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present article covers an influence of the impact of electromagnetic interferences on computer information systems whose purpose is to control transport supervision systems. The primary objective of transport supervision systems is to detect hazards to human life and health that occur in the process of transport: traveling of people and/or cargos. This process needs to be characterized by a high level of reliability and safety. The measure of the transport safety is the confidence that the elements of a transport process will remain intact during its realization with the exception of those changes that are the result of the natural processes of aging and wear. The railway environment is one of the most difficult environments concerning the provision of electromagnetic compatibility. Those electromagnetic interferences that are intended and not intended being generated in a rail area have an impact on the operation process of a transport supervision system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aniserowicz K (2005) The analysis of electromagnetic compatibility issues in large buildings exposed to lightning. Technical University of Białystok

  2. Będkowski L, Dąbrowski T (2006) Operational basics, vol. II, basics of operational reliability. Military University of Technology, Warsaw

    Google Scholar 

  3. Choromański W, Dyduch J, Paś J (2011) Minimizing the impact of electromagnetic interference affecting the control system of personal rapid transit in the context of the competitiveness of the supply chain. Archives of Transport, Polish Academy of Sciences Index 201 901. ISSN: 0866-9546 vol 23, Issue 2. Warsaw, pp 137–152

  4. Dobrowolski A, Tomczykiewicz K, Komur P (2007) Spectral analysis of motor unit action potentials. IEEE Trans Biomed Eng 54(12):2300–2302

    Article  Google Scholar 

  5. Dobrowolski A, Tomczykiewicz K, Komur P (2007) Fourier analysis of motor unit action potentials. Electron Telecommun Q 53(2):127–141

    Google Scholar 

  6. Duer S (2009) Artificial neural network-based technique for operation process control of a technical object. Def Sci J 59(3):305–313

    Google Scholar 

  7. Duer S, Duer R (2010) Diagnostic system with an artificial neural network which determines a diagnostic information for the servicing of a reparable technical object. Neural Comput Appl 19(5):755–766

    Article  Google Scholar 

  8. Duer S (2010) Expert knowledge base to support maintenance of a radar system. Def Sci J 60(5):531–540

    Google Scholar 

  9. Duer S (2011) Applications of an artificial intelligence for servicing of a technical object. Neural Comput Appl. doi:10.1007/s00521-011-0788-y

    Google Scholar 

  10. Duer S (2011) Assessment of the quality of decisions worked out by an artificial neural network which diagnoses a technical object. Neural Comput Appl. doi:10.1007/s00521-011-0725-0

  11. Duer S (2011) Examination of the reliability of a technical object after its regeneration in a maintenance system with an artificial neural network. Neural Comput Appl. doi:10.1007/s00521-011-0723-2

  12. Duer S (2011) Applications of an artificial intelligence for servicing of a technical object. Neural Comput Appl. doi:10.1007/s00521-011-0788-y

    Google Scholar 

  13. Rosiński A (2012) Reliability analysis of the electronic protection systems with mixed m–branches reliability structure. In: Berenguer, Grall, Guedes Soares (eds) Advances in safety, reliability and risk management. Taylor & Francis Group, London

  14. Rosiński A (2008) Design of the electronic protection systems with utilization of the method of analysis of reliability structures. In: Nineteenth international conference on systems engineering (ICSEng 2008), Las Vegas, USA

  15. Rosiński A (2010) Reliability analysis of the electronic protection systems with mixed—three branches reliability structure. In: Bris R, Guedes Soares C, Martorell S (eds) Reliability, risk and safety. Theory and applications, vol 3. CRC Press/Balkema, London

Download references

Acknowledgments

This work is supported by the Polish Ministry of Science and Higher Education in the years 2010–2012 as a development project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Duer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paś, J., Duer, S. Determination of the impact indicators of electromagnetic interferences on computer information systems. Neural Comput & Applic 23, 2143–2157 (2013). https://doi.org/10.1007/s00521-012-1165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1165-1

Keywords

Navigation