Skip to main content
Log in

Digital watermarking algorithm based on Kalman filtering and image fusion

  • LSMS2010 and ICSEE 2010
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A digital watermarking algorithm based on Kalman filter and image fusion is proposed. The digital watermarking can be viewed as a process that embedding a weak signal (watermark) to a strong signal (original image), so the process of watermarking can be viewed as a process of image fusion. In the proposed watermarking algorithm, the watermark embedding and extraction process are expressed as the state estimate process, and Kalman filter is used as an optimal estimation algorithm in the process of image fusion. An optimal estimation model is built according to the watermark image and the original image, and then the state equation and the corresponding measurement equation are built. The optimal estimation is archived in case of the minimum estimation error variance. Crossentropy and mutual information are used to evaluate the performance of image fusion. Experimental results show that the proposed algorithm has a good performance in both robustness and invisibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cao C, Hovakimyan N (2008) Vision-based tracking using intelligent excitation. Int J Control 81(11):1763–1778

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang C, Lin P, Yeh J (2009) Preserving robustness and removability for digital watermarks using subsampling and difference correlation. Inf Sci 179(13):2283–2293

    Article  Google Scholar 

  3. Cox IJ, Killian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687

    Article  Google Scholar 

  4. Fang Y, Huang J, Shi Y (2003) Image watermarking algorithm applying CDMA. In Proceedings of the international symposium on circuits and systems. pp 948–951

  5. Fang Y, Wu S, Huang J (2004) DWT-Based CDMA watermarking resist cropping. ACTA Autom Sin 30(3):442–448

    Google Scholar 

  6. Figueiredo MT, Nowak D (2003) An EM algorithm for waveletbased image restoration. IEEE Trans Image Process 12(8):906–916

    Article  MathSciNet  Google Scholar 

  7. Guo JM, Pei SC, Lee H (2008) Paired Subimage matching watermarking method on ordered dither images and its high-quality progressive coding. IEEE Trans Multimed 10(1):16–30

    Article  Google Scholar 

  8. Ho AS, Zhu X, Shen J, Marziliano P (2008) Fragile Watermarking Based on Encoding of the Zeroes of the z-Transform. IEEE Trans Inf Forensic Secur 3(3):567–569

    Article  Google Scholar 

  9. Hsieh M, Tseng D, Huang Y (2001) Hiding Digital Watermarks Using Multiresolution Wavelet Transform. IEEE Trans Ind Electron 48(5):875–882

    Article  Google Scholar 

  10. Hsu C, Wu J (1999) Hidden digital watermarks in images. IEEE Trans Image Process 8(1):58–68

    Article  Google Scholar 

  11. Kalman R, Bucy R (1961) New results in linear filtering and prediction theory. J Basic Eng Trans ASME 83:193–196

    Article  MathSciNet  Google Scholar 

  12. Ker D (2005) Steganalysis of LSB matching in grayscale images. IEEE Signal Process Lett 12(6):441–444

    Article  Google Scholar 

  13. Khan Shiraj, Bandyopadhyay Sharba, Ganguly R et al (2007) Relative performance of Mutual Information estimation methods for quantifying the dependence among short and noisy data. Phys Rev E 76(2):026209

    Article  MathSciNet  Google Scholar 

  14. Khan A, Moura J (2008) Distributing the Kalman filter for large-scale systems. IEEE Trans Signal Process 56(10):4919–4935

    Article  MathSciNet  Google Scholar 

  15. Miller M, Doerr G, Cox J (2004) Applying informed coding and embedding to design a robust high-capacity watermark. IEEE Trans Image Process 13(6):792–807

    Article  Google Scholar 

  16. Kirovski D, Petitcolas F (2003) Blind pattern matching attack on watermarking systems. IEEE Trans Signal Process 51(4):1045–1053

    Article  MathSciNet  Google Scholar 

  17. Kundur D, Hatzinakos D (2004) Toward robust logo watermarking using multiresolution image fusion principles. IEEE Trans Multimed 6(1):185–198

    Article  Google Scholar 

  18. Kwon B, Han S, Kwon W (2007) Minimum variance FIR smoothers for continuous-time state space signal models. IEEE Signal Process Lett 14(12):1024–1027

    Article  Google Scholar 

  19. Lan T, Erdogmus D (2007) Maximally informative feature and sensor selection in pattern recognition using local and global independent component analysis. J VLSI Signal Process Systems Signal Image Video Technol 48(1):39–52

    Article  Google Scholar 

  20. Lee Y, Kim H, Park Y (2009) A new data hiding scheme for binary image authentication with small image distortion. Inf Sci 179(22):3866–3884

    Article  Google Scholar 

  21. Lin HS, Liao HM, Lu CS, Lin JC (2005) Fragile watermarking for authenticating 3-D polygonal meshes. IEEE Trans Multimed 7(6):997–1006

    Article  Google Scholar 

  22. Lu Z, Xu D, Sun S (2005) Multipurpose image watermarking algorithm based on multistage vector quantization. IEEE Trans Image Process 14(6):822–831

    Article  Google Scholar 

  23. Maeno K, Sun Q, Chang S, Suto M (2006) New semi-fragile image authentication watermarking techniques using random bias and nonuniform quantization. IEEE Trans Multimed 8(1):32–45

    Article  Google Scholar 

  24. Alaeddin M, Maryam Y (2010) Image fusion algorithms for color and gray level images based on LCLS method and novel artificial neural network Neurocomputing. Neurocomputing 73(4–6):937–943

    Google Scholar 

  25. Mirikitani DT, Nikolaev N (2010) Efficient online recurrent connectionist learning with the ensemble Kalman filter. Neurocomputing 73(4–6):1024–1030

    Google Scholar 

  26. Montero J, Ruan D (2010) Modelling uncertainty. Inf Sci 180(6):799–802

    Article  Google Scholar 

  27. Murillo-Fuentes J (2009) Independent component analysis in the blind watermarking of digital images. Neurocomputing 70(16–18):2881–2890

    Google Scholar 

  28. Olama M, Djouadi Seddik, Papageorgiou G, Charalambous D (2008) Position and velocity tracking in mobile networks using particle and Kalman filtering with comparison. IEEE Trans Veh Technol 57(2):1001–1010

    Article  Google Scholar 

  29. Pei SC, Guo JM (2006) High capacity data hiding in halftone images using minimal error bit searching and least mean square filter. IEEE Trans Image Process 15(6):1665–1679

    Article  Google Scholar 

  30. Petitcolas FA, Anderson RJ, Kuhn MG (1999) Information hiding—a survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  31. Pina A, Zaverucha G (2009) Applying REC analysis to ensembles of particle filters. Neural Comput Appl 18(10):25–35

    Google Scholar 

  32. Sasikala M, Kumaravel N (2007) A comparative analysis of feature based image fusion methods. Inf Technol J 6(8):1224–1230

    Article  Google Scholar 

  33. Senjyu T, Kinjo K, Urasaki N, Uezato K (2003) High efficiency control of synchronous reluctance motors using extended Kalman filter. IEEE Trans Ind Electron 50(4):726–732

    Article  Google Scholar 

  34. Su D, Wu X (2006) Image fusion based on multi-feature fuzzy clustering. J Comput-Aid Design Comput Graph 18(6):838–843

    MathSciNet  Google Scholar 

  35. Sun Z, Liu J, Sun J, Sun X, Ling J (2009) A motion location based video watermarking scheme using ICA to extract dynamic frames. Neural Comput Appl 18(5):507–514

    Article  Google Scholar 

  36. Szabat K, Orlowska-Kowalska T (2008) Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptive Kalman filter. IEEE Trans Ind Electron 55(3):1075–1084

    Article  Google Scholar 

  37. Toprak A, Guler I (2008) Angiograph image restoration with the use of rule base fuzzy 2D Kalman filter. Expert Syst Appl 35(4):1752–1761

    Article  Google Scholar 

  38. Tseng H, Hsieh C (2009) Prediction-based reversible data hiding. Inf Sci 179(14):2460–2469

    Article  MATH  Google Scholar 

  39. Usman A, Moura J (2008) Distributing the Kalman filter for large-scale systems Khan. IEEE Trans Signal Process 56(10):4919–4935

    Article  MathSciNet  Google Scholar 

  40. Wang S, Zheng D, Zhao J, Tam W, Speranza F (2007) An image quality evaluation method based on digital watermarking. IEEE Trans Circuit Syst Video Technol 17(1):98–105

    Article  Google Scholar 

  41. Young SS (2006) Attitude estimation by multiple-mode Kalman filters. IEEE Trans Ind Electron 53(4):1386–1389

    Article  Google Scholar 

  42. Zhang J, Tian L, Tai H (2004) A new watermarking method based on Chaotic maps. IEEE Int Conf Multimed Expo, Taipei pp 939–942

  43. Zhang F, Zhang X, Zhang H (2007) Digital image watermarking capacity and detection error rate. Pattern Recogn Lett 28(1):1–10

    Article  Google Scholar 

  44. Zhang F, Pan Z, Cao K, Zheng F, Wu F (2008) The upper and lower bounds of the information-hiding capacity of digital images. Inf Sci 178:2950–2959

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Natural Science Foundation of China grants no. 60873039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Zhang, X. & Shang, D. Digital watermarking algorithm based on Kalman filtering and image fusion. Neural Comput & Applic 21, 1149–1157 (2012). https://doi.org/10.1007/s00521-011-0656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0656-9

Keywords

Navigation