Skip to main content

Advertisement

Log in

Animal models of the cancer anorexia–cachexia syndrome

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Background and aims

Cancer cachexia, a complex wasting syndrome, is common in palliative medicine. Animal models expand our understanding of its mechanisms. A review of cancer cachexia and anorexia animal models will help investigators make an informed choice of the study model.

Results and discussion

Cancer-anorexia cachexia animal models are numerous. No one is ideal. The choice should depend on the research question. To investigate cancer–anorexia cachexia independent of pro-inflammatory cytokine effects, the MAC16 ADK and XK1 are useful. MAC16 ADK helps study the host’s tumor metabolic effects, independent of any anorexia or inflammation. XK1 is both anorectic and cachectic, but data about it is limited. All other models induce a host inflammatory response. The Walker 256 ADK and MCG 101 are best avoided due to excessive tumor growth. Since individual models do not address all aspects of the syndrome, use of a combination seems wise. Suggested combinations: MAC16-ADK (non-inflammatory and non-anorectic) with YAH-130 (inflammatory, anorectic, and cachectic), Lewis lung carcinoma (slow onset anorexia) or prostate adenocarcinoma (inflammatory, anorectic but not cachectic) with YAH-130.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aggarwal BB (2008) The past, present and future of multi-targeted cancer treatment naturally: food for thought. Cancer Lett 269(2):187–188

    Article  PubMed  CAS  Google Scholar 

  2. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    Article  PubMed  CAS  Google Scholar 

  3. Baracos VE (2006) Cytokines and the pathophysiology of skeletal muscle atrophy. In: Haufbauer KG, Anker S, Inui A, Nicholson JA (eds) Pharmacotherapy of Cachexia. Taylor and Francis, p 101–109

  4. Baracos VE, Le Bricon T (2000) Animal models for nutrition in cancer. Nestle Nutr Workshop Ser Clin Perform Progr 4:167–180, discussion 180-182

    Article  CAS  Google Scholar 

  5. Baracos VE, DeVivo C, Hoyle DH et al (1995) Activation of the ATP–ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol 268:E996–E1006

    PubMed  CAS  Google Scholar 

  6. Bebarta V, Luyten D, Heard K (2003) Emergency medicine animal research: does use of randomization and blinding affect the results? Acad Emerg Med 10:684–687

    PubMed  Google Scholar 

  7. Berg M, Fraker DL, Alexander HR (1994) Characterization of differentiation factor/leukaemia inhibitory factor effect on lipoprotein lipase activity and mRNA in 3 T3-L1 adipocytes. Cytokine 6:425–432

    Article  PubMed  CAS  Google Scholar 

  8. Bossola M, Muscaritoli M, Costelli P et al (2001) Increased muscle ubiquitin mRNA levels in gastric cancer patients. Am J Physiol Regul Integr Comp Physiol 280:R1518–R1523

    PubMed  CAS  Google Scholar 

  9. Broussard SR, McCusker RH, Novakofski JE et al (2003) Cytokine-hormone interactions: tumor necrosis factor alpha impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. Endocrinology 144:2988–2996

    Article  PubMed  CAS  Google Scholar 

  10. Busquets S, Figueras MT, Fuster G et al (2004) Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res 64:6725–6731

    Article  PubMed  CAS  Google Scholar 

  11. Cahlin C, Korner A, Axelsson H et al (2000) Experimental cancer cachexia: the role of host-derived cytokines interleukin (IL)-6, IL-12, interferon-gamma, and tumor necrosis factor alpha evaluated in gene knockout, tumor-bearing mice on C57 bl background and eicosanoid-dependent cachexia. Cancer Res 60:5488–5493

    PubMed  CAS  Google Scholar 

  12. Cannon T, Couch M, Yin X et al (2007) Comparison of animal models for head and neck cancer cachexia. Laryngoscope 117(12):2152–2158

    Article  PubMed  Google Scholar 

  13. Costelli P, Garcia-Martinez C, Llovera M et al (1995) Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway. J Clin Invest 95:2367–2372

    Article  PubMed  CAS  Google Scholar 

  14. Davis MP, Dreicer R, Walsh D et al (2004) Appetite and cancer-associated anorexia: a review. J Clin Oncol 22:1510–1517

    Article  PubMed  CAS  Google Scholar 

  15. Davis MP, Walsh D, Lagman R et al (2006) Early satiety in cancer patients: a common and important but underrecognized symptom. Support Care Cancer 14:693–698

    Article  PubMed  Google Scholar 

  16. Dewys WD, Begg C, Lavin PT et al (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 69:491–497

    Article  PubMed  CAS  Google Scholar 

  17. Dirnagl U (2006) Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 26:1465–1478

    Article  PubMed  Google Scholar 

  18. Duguet A, Bachmann P, Lallemand Y, Blanc-Vincent MP (1999) Summary report of the standards options and recommendations for malnutrition and nutritional assessment in patients with cancer. Electron J Oncol 1:76–82

    Google Scholar 

  19. Emery PW (1999) Cachexia in experimental models. Nutrition 15:600–603

    Article  PubMed  CAS  Google Scholar 

  20. Emery PW, Lovell L, Rennie MJ (1984) Protein synthesis measured in vivo in muscle and liver of cachectic tumor-bearing mice. Cancer Res 44:2779–2784

    PubMed  CAS  Google Scholar 

  21. Frost RA, Lang CH (2004) Alteration of somatotropic function by proinflammatory cytokines. J Anim Sci 82(E-Suppl):E100–E109

    PubMed  Google Scholar 

  22. Frost RA, Lang CH (2005) Skeletal muscle cytokines: regulation by pathogen-associated molecules and catabolic hormones. Curr Opin Clin Nutr Metab Care 8:255–263

    Article  PubMed  CAS  Google Scholar 

  23. Hall JE (2001) The promise of translational physiology. Am J Physiol Gastrointest Liver Physiol 281:G1127–G1128

    PubMed  CAS  Google Scholar 

  24. Hauser K, Bennani-Baiti N, Kirkova J, Lasheen W, Powazki R, Seyidova-Khoshknabi D (2008) Priorities for the future, the research agenda. In: Walsh D (ed) Palliative medicine. Elsevier Science, Philadelphia, p 181

    Google Scholar 

  25. Hirai K, Hussey HJ, Barber MD et al (1998) Biological evaluation of a lipid-mobilizing factor isolated from the urine of cancer patients. Cancer Res 58:2359–2365

    PubMed  CAS  Google Scholar 

  26. Keenan KP, Laroque P, Ballam GC et al (1996) The effects of diet, ad libitum overfeeding, and moderate dietary restriction on the rodent bioassay: the uncontrolled variable in safety assessment. Toxicol Pathol 24:757–768

    Article  PubMed  CAS  Google Scholar 

  27. Lang CH, Silvis C, Deshpande N et al (2003) Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1beta, -6, and high-mobility-group protein-1 in skeletal muscle. Shock 19:538–546

    Article  PubMed  CAS  Google Scholar 

  28. Laviano A, Renvyle T, Meguid MM et al (1995) Relationship between interleukin-1 and cancer anorexia. Nutrition 11:680–683

    PubMed  CAS  Google Scholar 

  29. Laviano A, Meguid MM, Yang ZJ et al (1996) Cracking the riddle of cancer anorexia. Nutrition 12:706–710

    PubMed  CAS  Google Scholar 

  30. Laviano A, Cangiano C, Preziosa I et al (1996) Serotoninergic block in the ventromedial nucleus of hypothalamus improves food intake in anorectic tumor bearing rats. Adv Exp Med Biol 398:551–553

    PubMed  CAS  Google Scholar 

  31. Laviano A, Meguid MM, Rossi-Fanelli F (2003) Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol 4:686–694

    Article  PubMed  CAS  Google Scholar 

  32. Lecker SH, Solomon V, Mitch WE et al (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129:227S–237S

    PubMed  CAS  Google Scholar 

  33. Legaspi A, Jeevanandam M, Starnes HF Jr et al (1987) Whole body lipid and energy metabolism in the cancer patient. Metab Clin Exp 36:958–963

    PubMed  CAS  Google Scholar 

  34. Llovera M, Garcia-Martinez C, Lopez-Soriano J et al (1998) Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett 130:19–27

    Article  PubMed  CAS  Google Scholar 

  35. Lorite MJ, Smith HJ, Arnold JA et al (2001) Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine myoblasts in vitro by a proteolysis-inducing factor (PIF). Br J Cancer 85:297–302

    Article  PubMed  CAS  Google Scholar 

  36. Machado AP, Costa Rosa LF, Seelaender MC (2004) Adipose tissue in walker 256 tumour-induced cachexia: possible association between decreased leptin concentration and mononuclear cell infiltration. Cell Tissue Res 318:503–514

    Article  PubMed  Google Scholar 

  37. Murray S, Schell K, McCarthy DO et al (1997) Tumor growth, weight loss and cytokines in SCID mice. Cancer Lett 111:111–115

    Article  PubMed  CAS  Google Scholar 

  38. Neary NM, Small CJ, Wren AM et al (2004) Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 89:2832–2836

    Article  PubMed  CAS  Google Scholar 

  39. Nelson KA, Walsh D, Sheehan FA (1994) The cancer anorexia–cachexia syndrome. J Clin Oncol 12:213–225

    PubMed  CAS  Google Scholar 

  40. O’Gorman P, McMillan DC, McArdle CS (1998) Impact of weight loss, appetite, and the inflammatory response on quality of life in gastrointestinal cancer patients. Nutr Cancer 32:76–80

    Article  PubMed  Google Scholar 

  41. O’Gorman P, McMillan DC, McArdle CS (2000) Prognostic factors in advanced gastrointestinal cancer patients with weight loss. Nutr Cancer 37:36

    Article  PubMed  Google Scholar 

  42. Ohara M, Tsutsumi K, Ohsawa N (1998) Suppression of carcass weight loss in cachexia in rats bearing leydig cell tumor by the novel compound NO-1886, a lipoprotein lipase activator. Metabolism 47:101–105

    PubMed  CAS  Google Scholar 

  43. Perboni S, Mantvovani G, Inui A, Takimoto Y (2006) Anorexia: central and peripheral mechanisms. In: Hofbauer KG, Anker S, Inui A, Nicholson JR (eds) Pharmacotherapy of cachexia. CRC Press, Boca Raton, pp 17–30

    Google Scholar 

  44. Perel P, Roberts I, Sena E et al (2007) Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 334:197

    Article  PubMed  CAS  Google Scholar 

  45. Pizato N, Bonatto S, Yamazaki RK et al (2005) Ratio of n6 to n-3 fatty acids in the diet affects tumor growth and cachexia in Walker 256 tumor-bearing rats. Nutr Cancer 53:194–201

    Article  PubMed  CAS  Google Scholar 

  46. Plata-Salaman CR (2000) Central nervous system mechanisms contributing to the cachexia–anorexia syndrome. Nutrition 16:1009–1012

    Article  PubMed  CAS  Google Scholar 

  47. Plata-Salaman CR, Ilyin SE, Gayle D (1998) Brain cytokine mRNAs in anorectic rats bearing prostate adenocarcinoma tumor cells. Am J Physiol 275:R566–R573

    PubMed  CAS  Google Scholar 

  48. Roubenoff R, Heymsfield SB, Kehayias JJ et al (1997) Standardization of nomenclature of body composition in weight loss. Am J Clin Nutr 66:192–196

    PubMed  CAS  Google Scholar 

  49. Sabatini M, Yates AJ, Garrett IR et al (1990) Increased production of tumor necrosis factor by normal immune cells in a model of the humoral hypercalcemia of malignancy. Lab Invest 63:676–682

    PubMed  CAS  Google Scholar 

  50. Sarhill N, Mahmoud F, Walsh D et al (2003) Evaluation of nutritional status in advanced metastatic cancer. Support Care Cancer 11:652–659

    Article  PubMed  CAS  Google Scholar 

  51. Schulze PC, Gielen S, Adams V et al (2003) Muscular levels of proinflammatory cytokines correlate with a reduced expression of insulin like growth factor-I in chronic heart failure. Basic Res Cardiol 98:267–274

    PubMed  CAS  Google Scholar 

  52. Siddiqui RA, Williams JF (1990) Tentative identification of the toxohormones of cancer cachexia: roles of vasopressin, prostaglandin E2 and cachectin-TNF. Biochem Int 20:787–797

    PubMed  CAS  Google Scholar 

  53. Skinner BF (1930) On the conditions of elicitation of certain eating reflexes. Proc Natl Acad Sci USA 16(6):433–438

    Article  PubMed  CAS  Google Scholar 

  54. Skinner BF, Morse WH (1957) Concurrent activity under fixed-interval reinforcement. J Comp Physiol Psychol 50(3):279–281

    Article  PubMed  CAS  Google Scholar 

  55. Suto G, Kiraly A, Plourde V et al (1996) Intravenous interleukin-1-beta-induced inhibition of gastric emptying: involvement of central corticotrophin-releasing factor and prostaglandin pathways in rats. Digestion 57:135–140

    Article  PubMed  CAS  Google Scholar 

  56. Talmadge JE, Singh RK, Fidler IJ et al (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804

    Article  PubMed  CAS  Google Scholar 

  57. Tessitore L, Costelli P, Bonetti G et al (1993) Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys 306:52–58

    Article  PubMed  CAS  Google Scholar 

  58. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871

    Article  PubMed  CAS  Google Scholar 

  59. Tisdale MJ (2006) Proteolysis-inducing factor in cancer cachexia. In: Mantovani G (ed) Cachexia and wasting. A modern approach. Springer, Italy, pp 483–488

    Chapter  Google Scholar 

  60. Tisdale MJ, McDevitt TM, Todorov PT et al (1996) Catabolic factors in cancer cachexia. In Vivo 10:131–136

    PubMed  CAS  Google Scholar 

  61. Tkacs NC, Thompson HJ (2006) From bedside to bench and back again: research issues in animal models of human disease. Biol Res Nurs 8:78–88

    Article  PubMed  Google Scholar 

  62. Todorov P, Cariuk P, McDevitt T et al (1996) Characterization of a cancer cachectic factor. Nature 379:739–742

    Article  PubMed  CAS  Google Scholar 

  63. Todorov PT, McDevitt TM, Meyer DJ et al (1998) Purification and characterization of a tumor lipid-mobilizing factor. Cancer Res 58:2353–2358

    PubMed  CAS  Google Scholar 

  64. Togni V, Ota CC, Folador A et al (2003) Cancer cachexia and tumor growth reduction in walker 256 tumor-bearing rats supplemented with N-3 polyunsaturated fatty acids for one generation. Nutr Cancer 46:52–58

    Article  PubMed  CAS  Google Scholar 

  65. Turrin NP, Ilyin SE, Gayle DA et al (2004) Interleukin-1 beta system in anorectic catabolic tumor-bearing rats. Curr Opin Clin Nutr Metab Care 7:419–426

    Article  PubMed  CAS  Google Scholar 

  66. van der Worp HB, de Haan P, Morrema E et al (2005) Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia. J Neurol 252:1108–1114

    Article  PubMed  Google Scholar 

  67. Walsh D, Donnelly S, Rybicki L (2000) The symptoms of advanced cancer: relationship to age, gender, and performance status in 1,000 patients. Support Care Cancer 8:175–179

    Article  PubMed  CAS  Google Scholar 

  68. Walsh D, Rybicki L, Nelson KA et al (2002) Symptoms and prognosis in advanced cancer. Support Care Cancer 10:385–388

    Article  PubMed  Google Scholar 

  69. Watchorn TM, Waddell I, Dowidar N et al (2001) Proteolysis-inducing factor regulates hepatic gene expression via the transcription factors NF-(kappa)B and STAT3. FASEB J 15:562–564

    PubMed  CAS  Google Scholar 

  70. Williams A, Sun X, Fischer JE et al (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126:744–749

    Article  PubMed  CAS  Google Scholar 

  71. Wong S, Pinkney J (2004) Role of cytokines in regulating feeding behaviour. Curr Drug Targets 5:251–263

    Article  PubMed  CAS  Google Scholar 

  72. Wood LJ, Nail LM, Perrin NA et al (2006) The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol Res Nurs 8:157–169

    Article  PubMed  CAS  Google Scholar 

  73. Yano CL, Ventrucci G, Field WN et al (2008) Metabolic and morphological alterations induced by proteolysis-inducing factor from walker tumour-bearing rats in C2C12 myotubes. BMC Cancer 8:24

    Article  PubMed  Google Scholar 

  74. Yavuzsen T, Davis MP, Walsh D et al (2005) Systematic review of the treatment of cancer-associated anorexia and weight loss. J Clin Oncol 23:8500–8511

    Article  PubMed  CAS  Google Scholar 

  75. Zylicz Z, Schwantje O, Wagener DJ et al (1990) Metabolic response to enteral food in different phases of cancer cachexia in rats. Oncology 47:87–91

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statements

We have no consultant or advisory positions and no stock or other ownership interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Declan Walsh.

Additional information

The Harry R. Horvitz Center for Palliative Medicine is a World Health Organization Demonstration Project in Palliative Medicine and ESMO Designated Center of Integrated Oncology and Palliative Care.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennani-Baiti, N., Walsh, D. Animal models of the cancer anorexia–cachexia syndrome. Support Care Cancer 19, 1451–1463 (2011). https://doi.org/10.1007/s00520-010-0972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-010-0972-0

Keywords

Navigation