Skip to main content
Log in

Effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD

A pilot study

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background and objective

Chronic obstructive pulmonary disease (COPD) is associated with reduced exercise capacity. In COPD iron deficiency is found in up to 50% of patients and may impair exercise capacity, the potential therapeutic effect is yet unknown. We aimed to estimate the beneficial effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD.

Methods

In this non-randomized, interrupted time series pilot trial we enrolled outpatients with stable COPD (GOLD II and III) and nonanemic iron deficiency (i.e., ferritin level < 100 μg/l or ferritin level 100–300 μg/l if transferrin saturation < 20%). Patients with cardiovascular-or inflammatory diseases were excluded. Participants performed 6‑minute walking test (6-MWT) and cardiopulmonary exercise testing (CPET) and completed the St. George’s Respiratory Questionnaire (SGRQ).

Results

From 35 screened patients, 11 (72% male, 63 ± 8 years, FEV1%predicted 44 ± 14) were included. Mean ferritin and hemoglobin were 70 ± 41 µg/l and 13.8 ± 1.7 g/dl, respectively. Four weeks after iron administration the 6‑MWT distance increased by 34.7 ± 34.4 m (95% CI, 10.0–59.3); p = 0.011. The VO2max increased by 1.87 ± 1.2 ml/kg/min (95% CI, 0.76–3); p = 0.006. Mean score of SGRQ was reduced by 7.56 ± 6.12 units (95% CI, 3 to 11); p = 0.004. The insignificant alteration in hemoglobin did not correlate with increase in exercise capacity.

Conclusion

Administration of intravenous iron was associated with improved exercise capacity and quality of life in stable COPD patients independent of hemoglobin. Our data provide a basis to calculate a statistically sufficient sample size for a randomized controlled follow-up study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHF:

Chronic heart failure

COPD:

Chronic obstructive pulmonary disease

CPET:

Cardiopulmonary exercise testing

FEV1:

Forced expiratory volume in one second

FVC:

Forced vital capacity

GOLD:

Global Initiative for Chronic Obstructive Lung Disease

Hb:

Hemoglobin

ID:

Iron deficiency

MCID:

Minimal clinically important difference

SGRQ:

St. George’s Respiratory Questionnaire

TSAT:

Transferrin saturation

VO2max:

Maximum oxygen uptake

6‑MWT:

6‑minute walking test

References

  1. Killian, et al. Exercise capacity and ventilatory, circulatory and symptom limitation in patients in chronic airflow limitation. Am Rev Respir Dis. 1992;146(4):935–40.

    Article  CAS  Google Scholar 

  2. Engelen, et al. Skeletal muscle weakness is associated with wasting of extremity fat-free mass but not with airflow obstruction in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2000;71(3):733–8.

    Article  CAS  Google Scholar 

  3. Gosker HR, et al. Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. Chest. 2003;123(5):1416–24.

    Article  Google Scholar 

  4. Gosker HR, et al. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr. 1999;71:1033–47.

    Article  Google Scholar 

  5. Casburi R. Skeletal muscle dysfunction and chronic obstructive pulmonry disease. Med Sci Sports Exerc. 2011;33(7 Suppl):S662–S70.

    Google Scholar 

  6. Anker SD, Colet JC, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48.

    Article  CAS  Google Scholar 

  7. Harridge SD, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjörnsson M, Saltinet B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pfflugers Arch. 1996;432:913–20.

    Article  CAS  Google Scholar 

  8. Harridge SDR. Plasticity of human skeletal muscle:gene expression to in vivo function. Exp Physiol. 2007;92(5):783–97.

    Article  CAS  Google Scholar 

  9. Beilschmidt LK, Puccio HM. Mammilian Fe‑S cluster biogenesis and its implication in disease. Biochimie. 2014;100:48–60.

    Article  CAS  Google Scholar 

  10. Lanza IR, Sreekumaran N. Mitochondrial metabolic function assessed in vivo and in vitro. Curr Opin Clin Nutr Metab Care. 2010;13(5):511–7.

    Article  Google Scholar 

  11. Lanza IR, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008;57:2933–42.

    Article  CAS  Google Scholar 

  12. Tong WH, Rouault TA. Function of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab. 2006;3(3):199–210.

    Article  CAS  Google Scholar 

  13. al et LSC. Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD 11, cause deficiency of multiple respiatory chain complexes. Hum Mol Genet. 2013;22(22):4460–73.

    Article  Google Scholar 

  14. Panday A, Pain J, Ghosh AK, Dancis A, Pain D. Fe‑S cluster biogenesis in isolated mammalian mitochondria: coordinated use of persulfide sulfur and iron and requirements for GTP, NADH and ATP. J Biol Chem. 2015;290(1):640–57.

    Article  Google Scholar 

  15. Cloonan SM, Mumby S, Adcock IM, Choi AMK, Chung KF, Quinlan GJ. The “iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;196(9):1103–12.

    Article  CAS  Google Scholar 

  16. Silverberg DS, et al. Anemia and iron deficiency in COPD patients:prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. BMC Pulm. 2014. https://doi.org/10.1186/1471-2466-14-24.

    Article  Google Scholar 

  17. Santer P, McGahey A, Frise MC, Petousi N, Talbot NP, Baskerville R, et al. Intravenous iron and chronic obstructive pulmonary disease: a randomised controlled trial. BMJ Open Respir Res. 2020;7(1):e000577. https://doi.org/10.1136/bmjresp-2020-000577.

    Article  Google Scholar 

  18. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–8.

    CAS  Google Scholar 

  19. Lopes AJ, Vigário PS, Hora AL, Deus CA, Soares MS, Guimaraes FS, et al. Ventilation distribution, pulmonary diffusion and peripheral muscle endurance as determinants of exercise intolerance in elderly patients with chronic obstructive pulmonary disease. Physiol Res. 2018;67(6):863–74.

    Article  CAS  Google Scholar 

  20. Weatherall M, Marsh S, Shirtcliffe P, Williams M, Travers J, Beasley R. Quality of life measured by the St george’s respiratory questionnaire and spirometry. Eur Respir J. 2009;33(5):1025–30.

    Article  CAS  Google Scholar 

  21. Nickol A, et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open. 2015;5:e7911.

    Article  Google Scholar 

  22. Nanas J, Matsouka C, Karageorgopoulos D, Leonti A, Tsolakis E, Drakos S, et al. Etiology of anemia in patients with advanced heart failure. J Am Coll Cardiol. 2006;48(12):2485–9.

    Article  Google Scholar 

  23. Zhu Y, Haas J. Altered metabolic response of iron-depleted nonanemic women during a 15-km time trial. J Appl Physiol. 1998;84(5):1768–75.

    Article  CAS  Google Scholar 

  24. Jones SE, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–8.

    Article  Google Scholar 

  25. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015; https://doi.org/10.1002/14651858.CD003793.pub3.

    Article  Google Scholar 

  26. Fermont JM, Masconi KL, Jensen MT, Ferrari R, Di Lorenzo VAP, Marott JM, et al. Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. Thorax. 2019;74(5):439–46.

    Article  Google Scholar 

  27. Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1447–78.

    Article  Google Scholar 

  28. Polkey MI, Spruit MA, Edwards LD, Watkins ML, Pinto-Plata V, Vestbo J, et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med. 2013;187(4):382–6.

    Article  CAS  Google Scholar 

  29. Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement Task Force Report in Press. 2016. Corrected Proof.

    Google Scholar 

  30. Jones PW. St. George’s respiratory questionnaire: MCID. J Chronic Obstr Pulm Dis. 2005. https://doi.org/10.1081/copd-200050513.

    Article  Google Scholar 

  31. Dupont WD, Plummer WDJ. Power and sample size calculations. A review and computer program. Control Clin Trials. 1990;11(2):116–28.

    Article  CAS  Google Scholar 

  32. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016. https://doi.org/10.1136/bmj.i5239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Grasmuk-Siegl MD.

Ethics declarations

Conflict of interest

E. Grasmuk-Siegl, M.H. Urban, S. Scherrer and G.-C. Funk declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grasmuk-Siegl, E., Urban, M.H., Scherrer, S. et al. Effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD. Wien Klin Wochenschr 135, 35–44 (2023). https://doi.org/10.1007/s00508-022-02073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-022-02073-4

Keywords

Navigation