Skip to main content
Log in

Neurotoxic effects of nonylphenol: a review

Neurotoxische Wirkungen von Nonylphenol: Eine Übersicht

  • review article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Nonylphenol (NP), identified as an environmental endocrine disruptor, used as important raw materials for detergents, emulsifiers, and wetting agents in industry and is also found in paints, pesticides, and household toiletries. NP has been reported to have deleterious effects on central nervous system (CNS) other than reproductive and immune systems including disrupting neuroendocrine homeostasis, altering cognitive function, and neurotoxicity of tissues, etc., particularly when NP’s disruption occurs during critical developmental window of brain. This review will discuss the evidence for environmental endocrine disruption of NP and the sequelae on endocrine, reproductive and nerve functions, as well as causal relationships between endocrine disruption and cognitive behavior effects.

Zusammenfassung

Nonylphenol (NP), welches als endokriner Unterbrecher der Umwelt identifiziert worden ist, wird als wichtiges Rohmaterial für Detergenzien, Emulgatoren und Nassmittel in der Industrie verwendet. NP wird auch in Farben und Pestiziden gefunden. Es liegen Berichte vor, die verheerende Wirkungen von NP auf das Zentralnervensystem (ZNS), sowie auf das Reproduktions- und Immunsystem beschreiben. Es soll durch eine NP bedingte Störung der neuroendokrinen Homöostasis zu Veränderungen der kognitiven Funktion und zu neurotoxischen Gewebsschäden kommen. Diese Veränderungen treten vor allem auf, wenn der Kontakt mit NP während kritischer Entwicklungsphasen des Gehirns stattfindet. Die vorliegende Übersicht diskutiert die Evidenz für die NP bedingten endokrinen Störungen und die Folgen auf das Endokrinium, auf das Reproduktionssystem und auf die Nervenfunktionen. Außerdem wird auf die kausale Beziehung zwischen der von NP ausgelösten endokrinen Störung und deren Auswirkung auf die kognitive Funktion und das Verhalten eingegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Xu J, Wanf Y, Yu J, Hashim JH, Liu XY, Fan QY, et al. Toxic effect of gestational exposure to nonylphenol on F1 male rats. Birth Defects Res B Dev Reprod Toxicol. 2010;89(5):418–28.

    Article  Google Scholar 

  2. Teles M, Pacheco M, Santos MA. Sparus aurata L. liver EROD and GST activities, plasma cortisol, lactate, glucose and erythrocytic nuclear anomalies following short-term exposure either to 17beta-estradiol (E2) or E2 combined with 4-nonylphenol. Sci Total Environ. 2005;336(1–3):57–69.

    Article  PubMed  CAS  Google Scholar 

  3. Xu J, Wang Y, Yu J, Fan Q-Y, Liu X-Y, et al. Immune effects of nonylphenol on offspring of rats exposed during pregnancy. Hum Ecol Risk Assess. 2010;16:444–52.

    Article  Google Scholar 

  4. Senthil Kumaran S, Kavitha C, Ramesh M, Grummt T. Toxicity studies of nonylphenol and octylphenol: hormonal, hematological and biochemical effects in Clarias gariepinus. J Appl Toxicol. 2011. doi:10.1002/jat.1629.

  5. Mao Z, Zheng YL, Zhang YQ. Behavioral impairment and oxidative damage induced by chronic application of nonylphenol. Int J Mol Sci. 2010;12(1):114–27.

    Article  PubMed  Google Scholar 

  6. Riva C, Porte C, Binelli A, Provini A. Evaluation of 4-nonylphenol in vivo exposure in Dreissena polymorpha: Bioaccumulation, steroid levels and oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol. 2010;152(2):175–81.

    Article  PubMed  Google Scholar 

  7. Yadetie F, Arukwe A, Goksøyr A, Male R. Induction of hepatic estrogen receptor in juvenile Atlantic salmon in vivo by the environmental estrogen, 4-nonylphenol. Sci Total Environ. 1999;233(1–3):201–10.

    Article  PubMed  CAS  Google Scholar 

  8. Verner MA, Magher T, Haddad S. High concentrations of commonly used drugs can inhibit the in vitro glucuronidation of bisphenol A and nonylphenol in rats. Xenobiotica. 2010;40(2):83–92.

    Article  PubMed  CAS  Google Scholar 

  9. EU Risk Assessment. 4-Nonylphenol (Branched) and Nonylphenol. European Commission, Institute for Health and Consumer Protection, European Chemicals Bureau. 2002. http://ecb.jrc.it/Documents/Existing-Chemicals/RISK_ASSESSMENT/SUMMARY/4-nonylphenol_nonylphenolsum017.pdf. Accessed 8 June 2011.

  10. Health Canada. Priority substances list assessment report for nonylphenol and its ethoxylates. 2007. http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2-lsp2/nonylphenol/nonylphenol_2-eng.php. Accessed 15 May 2011.

  11. Nimrod AC, Benson WH. Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol. 1996;26:335–64.

    Article  PubMed  CAS  Google Scholar 

  12. KEMI (Swedish Chemicals Agency). Information on substances: nonylphenol. 2009. http://apps.kemi.se/flodessok/floden/kemamne_eng/nonylfenol_eng.htm. Accessed 22 June 2011.

  13. Xu J, Wang P, Guo W, Dong J, Wang L, Dai S. Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere. 2006;65(9):1445–51.

    Article  PubMed  CAS  Google Scholar 

  14. Shao B, Hu JY, Yang M. A survey of nonylphenol in aquatic environment of Chongqing Valley. Acta Scient Circumstant. 2002;22:12–6 (in Chinese).

    CAS  Google Scholar 

  15. Dachs J, Van Ry D, Eisenreich S. Occurrence of estrogenic nonylphenols in the urban and costal atmosphere of the lower Hudson River Estuary. Environ Sci Technol. 1999;33:2676–9.

    Article  CAS  Google Scholar 

  16. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003;37(20):4543–53.

    Google Scholar 

  17. Wang L, Wu Y, Sun H. Distribution and dissipation pathways of nonylphenol polyethoxylates in the Yellow River: site investigation and lab-scale studies. Environ Int. 2006;32(7):907–14.

    Article  PubMed  CAS  Google Scholar 

  18. Fan Q-Y. Potential impact of Nonylphenol on male reproductive systems. Thesis for fulfilment of the requirements for the degree of philosophy in Environmental health in Fudan University, ShangHai, P.R. of China. 2001;9–10.

  19. Gore AC. Neuroendocrine systems as targets for environmental endocrine-disrupting chemicals. Fertil Steril. 2008;89(Suppl 2):e101–2.

    Article  PubMed  Google Scholar 

  20. Zhang J, Lazar MA. The mechanism of action of thyroid hormones. Annu Rev Physiol. 2000;62:439–66.

    Article  PubMed  CAS  Google Scholar 

  21. Nagao T, Wada K, Marumo H, Yoshimura S, Ono H. Reproductive effects of nonylphenol in rats after gavage administration: a twogeneration study. Reprod Toxicol. 2001;15:293–315.

    Article  PubMed  CAS  Google Scholar 

  22. McCormick SD, O’Dea MF, Moeckel AM, Lerner DT, Bjornsson BT. Endocrine disruption of parr-smolt transformation and seawater tolerance of Atlantic salmon by 4-nonylphenol and 17-beta-estradiol. Gen Comp Endocrinol. 2005;142:280–8.

    Article  PubMed  CAS  Google Scholar 

  23. Schmutzler C, Hamann I, Hofmann PJ, Kovacs G, Stemmler L, Mentrup B, et al. Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney. Toxicology. 2004;205:95–102.

    Article  PubMed  CAS  Google Scholar 

  24. Ghisari M, Bonefeld-Jorgensen EC. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells. Mol Cell Endocrinol. 2005;244(1–2):31–41.

    Article  PubMed  CAS  Google Scholar 

  25. Yamauchi K, Ishihara A, Fukazawa H, Terao Y. Competitive interactions of chlorinated phenol compounds with 3,3′,5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol Appl Pharmacol. 2003;187(2):110–7.

    Article  PubMed  CAS  Google Scholar 

  26. Kimura-Kuroda J, Nagata I, Kuroda Y. Hydroxylated metabolites of polychlorinated biphenyls inhibit thyroidhormone-dependent extension of cerebellar Purkinje cell dendrites. Brain Res Dev Brain Res. 2005;154(2):259–63.

    Article  PubMed  CAS  Google Scholar 

  27. Vosges M, Kah O, Hinfray N, Chadili E, Le Page Y, Combarnous Y, et al. 17a-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway. Reprod Toxicol. 2012;33(2):198–204.

    Google Scholar 

  28. Bevan CL, Porter DM, Schumann CR, Bryleva EY, Hendershot TJ, Liu H, Howard MJ, Henderson LP. The endocrine-disrupting compound, nonylphenol, inhibits neurotrophin-dependent neurite outgrowth. Endocrinology. 2006;147(9):4192–204.

    Article  PubMed  CAS  Google Scholar 

  29. Xia YY, Zhan P, Wang Y. Effects of nonylphenol on brain gene expression profiles in F1 generation rats. Biomed Environ Sci. 2008;21:1–6.

    Article  PubMed  CAS  Google Scholar 

  30. Takagi H, Shibutani M, Masutomi N, Uneyama C, Takahashi N, Mitsumori K, Hirose M. Lack of maternal dietary exposure effects of bisphenol A and nonylphenol during the critical period for brain sexual differentiation on the reproductive/endocrine systems in later life. Arch Toxicol. 2004;78:97–105.

    Article  PubMed  CAS  Google Scholar 

  31. Nagao T, Saito Y, Usumi K, Nakagomi M, Yoshimura S, Ono H. Disruption of the reproductive system and reproductive performance by administration of nonylphenol to newborn rats. Hum Exp Toxicol. 2000;19:284–96.

    Article  PubMed  CAS  Google Scholar 

  32. Furuta M, Funabashi T, Kawaguchi M, Nakamura TJ, Mitsushima D, Kimura F. Effects of p-nonylphenol and 4-tert-octylphenol on the anterior pituitary functions in adult ovariectomized rats. Neuroendocrinology. 2006;84(1):14–20.

    Article  PubMed  CAS  Google Scholar 

  33. Katoh K, Matsuda A, Ishigami A, Yonekura S, Ishiwata H, Chen C, Obara Y. Suppressing effects of bisphenol A on the secretory function of ovine anterior pituitary cells. Cell Biol Int. 2004;28(6):463–9.

    Article  PubMed  CAS  Google Scholar 

  34. Dang VH, Choi KC, Jeung EB. Estrogen receptors are involved in xenoestrogen induction of growth hormone in the rat pituitary gland. J Reprod Dev. 2009;55(2):206–13.

    Article  PubMed  CAS  Google Scholar 

  35. Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-a-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect. 2005;113(4):431–9.

    Article  PubMed  CAS  Google Scholar 

  36. Watson CS, Bulayeva NN, Wozniak AL, Finnerty CC. Signaling from the membrane via membrane estrogen receptor-alpha: estrogens, xenoestrogens, and phytoestrogens. Steroids. 2005;70:364–71.

    Article  PubMed  CAS  Google Scholar 

  37. Masutomi N, Shibutani M, Takagi H, Uneyama C, Lee KY, Hirose M. Alteration of pituitary hormone-immunoreactive cell populations in rat offspring after maternal dietary exposure to endocrine-active chemicals. Arch Toxicol. 2004;78(4):232–40.

    Article  PubMed  CAS  Google Scholar 

  38. Fujimoto N. Effects of environmental estrogenic compounds on growth of a transplanted estrogen responsive pituitary tumor cell line in rats. Food Chem Toxicol. 2003;41(12):1711–7.

    Article  PubMed  CAS  Google Scholar 

  39. Yokosuka M, Ohtani-Kaneko R, Yamashita K, Muraoka D, Kuroda Y, Watanabe C. Estrogen and environmental estrogenic chemicals exert developmental effects on rat hypothalamic neurons and glias. Toxicol In Vitro. 2008;22(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  40. Scallet AC, Divine RL, Newbold RR, Delclos KB. Increased volume of the calbindin D28k-labeled sexually dimorphic hypothalamus in genistein and nonylphenol-treated male rats. Toxicol Sci. 2004;82:570–6.

    Article  PubMed  CAS  Google Scholar 

  41. Obata T. Environmental estrogen-like chemicals and hydroxyl radicals induced by MPTP in the striatum: a review. Neurochem Res. 2002;27(5):423–31.

    Article  PubMed  CAS  Google Scholar 

  42. Obata T, Kubota S, Yamanaka Y. Protective effect of histidine on para-nonylphenol-enhanced hydroxyl free radical generation induced by 1-methyl-4-phenylpyridinium ion (MPP+) in rat striatum. Biochim Biophys Acta. 2001a;1568(2):171–5.

    Article  CAS  Google Scholar 

  43. Obata T, Kubota S. Formation of hydroxy radicals by environmental estrogen-like chemicals in rat striatum. Neurosci Lett. 2000;296:41–4.

    Article  PubMed  CAS  Google Scholar 

  44. Obata T, Kubota S, Yamanaka Y. Allopurinol suppresses para-nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP(+))-induced hydroxyl radical generation in rat striatum. Neurosci Lett. 2001b;306(1–2):9–12.

    Article  CAS  Google Scholar 

  45. Ferguson SA, Flynn KM, Delclos KB, Newbold RR, Gough BJ. Effects of lifelong dietary exposure to genistein or nonylphenol on amphetamine-stimulated striatal dopamine release in male and female rats. Neurotoxicol Teratol. 2002;24(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  46. Negishi T, Kawasaki K, Suzaki S, Maeda H, Ishii Y, Kyuwa S, Kuroda Y, Yoshikawa Y. Behavioral alterations in response to fear-provoking stimuli and tranylcypromine induced by perinatal exposure to bisphenol A and nonylphenol in male rats. Environ. Health Perspect. 2004;112:1159–64.

    Article  PubMed  CAS  Google Scholar 

  47. Ferguson SA, Flynn KM, Delclos KB, Newbold RR. Maternal and offspring toxicity but few sexually dimorphic behavioral alterations result from nonylphenol exposure. Neurotoxicol Teratol. 2000;22:583–91.

    Article  PubMed  CAS  Google Scholar 

  48. Masuo Y, Morita M, Oka S. and Ishido M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: a study inspired by the physiological roles of PACAP in the brain. Regul Pept. 2004a;123:225–34.

    Article  CAS  Google Scholar 

  49. Masuo Y, Ishido M, Morita M, Oka S. Effects of neonatal treatment with 6-hydroxydopamine and endocrine disruptors on motor activity and gene expression in rats. Neural Plast. 2004b;11,59–76.

    Article  CAS  Google Scholar 

  50. Ishido M, Morita M, Oka S, Masuo Y. Alteration of gene expression of G protein-coupled receptors in endocrine disruptors-caused hyperactive rats. Regul Pept. 2005;126:145–53.

    Article  PubMed  CAS  Google Scholar 

  51. Kudo C, Wada K, Masuda T, Yonemura T, Shibuya A, Fujimoto Y, et al. Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle. J Neurochem. 2004;88:1416–23.

    Article  PubMed  CAS  Google Scholar 

  52. Pretorius E, Bornman MS, Marx J, Smit E, Van Der Merwe CF. Ultrastructural effects of low dosage endocrine disrupter chemicals on neural cells of the chicken embryo model. Horm Metab Res. 2006;38(10):639–49.

    Article  PubMed  CAS  Google Scholar 

  53. Sato K, Matsuki N, Ohno Y, Nakazawa K. Estrogens inhibit l-glutamate uptake activity of astrocytes via membrane estrogen receptor alpha. J Neurochem. 2003;86:1498–505.

    Article  PubMed  CAS  Google Scholar 

  54. Kusunoki T, Shimoke K, Komatsubara S, Kishi S, Ikeuchi T. p-Nonylphenol induces endoplasmic reticulum stress-mediated apoptosis in neuronally differentiated PC12 cells. Neurosci Lett. 2008;431(3):2560–1.

    Article  Google Scholar 

  55. Bradley DJ, Young WS 3rd, Weinberger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A. 1989;86(18):7250–4.

    Article  PubMed  CAS  Google Scholar 

  56. Shikimi H, Sakamoto H, Mezaki Y, Ukena K, Tsutsui K. Dendritic growth in response to environmental estrogens in the developing Purkinje cell in rats. Neurosci Lett. 2004;364:114–8.

    Article  PubMed  CAS  Google Scholar 

  57. Woo GH, Shibutani M, Ichiki T, Hamamura M, Lee KY, Inoue K, Hirose M. A repeated 28-day oral dose toxicity study of nonylphenol in rats, based on the ‘enhanced OECD test guideline 407’ for screening of endocrine-disrupting chemicals. Arch Toxicol. 2007;81(2):77–88.

    Article  PubMed  CAS  Google Scholar 

  58. Cunny HC, Mayes BA, Rosica KA, Trutter JA, Van Miller JP. Subchronic toxicity (90-day) study with para-nonylphenol in rats. Regul Toxicol Pharmacol. 1997;26(2):172–8.

    Article  PubMed  CAS  Google Scholar 

  59. Funabashi T, Nakamura TJ, Kimura F. p-Nonylphenol, 4-tert-octylphenol and bisphenol A increase the expression of progesterone receptor mRNA in the frontal cortex of adult ovariectomized rats. J Neuroendocrinol. 2004;16(2):99–104.

    Article  PubMed  CAS  Google Scholar 

  60. Arukwe A, Thibaut R, Ingebrigtsen K, Celius T, Goksoyr A, Cravedi J. In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquatic Toxicol. 2000;49(4):289–304.

    Article  CAS  Google Scholar 

  61. Lyssimachou A, Arukwe A. Alteration of brain and interrenal StAR protein, P450scc, and Cyp11beta mRNA levels in atlantic salmon after nominal waterborne exposure to the synthetic pharmaceutical estrogen ethynylestradiol. J Toxicol Environ Health A. 2007;70(7):606–13.

    Article  PubMed  CAS  Google Scholar 

  62. Arukwe A. Modulation of brain steroidogenesis by affecting transcriptional changes of steroidogenic acute regulatory (StAR) protein and cholesterol side chain cleavage (P450scc) in Juvenile Atlantic salmon (Salmo salar) is a novel aspect of nonylphenol toxicity. Environ Sci Technol. 2005;39:9791–8.

    Article  PubMed  CAS  Google Scholar 

  63. Mochida K, Ohkubo N, Matsubara T, Ito K, Kakuno A, Fujii K. Effects of endocrine-disrupting chemicals on expression of ubiquitin C-terminal hydrolase mRNA in testis and brain of the Japanese common goby. Aquat Toxicol. 2004;70(2):123–36.

    Article  PubMed  CAS  Google Scholar 

  64. Meucci V, Arukwe A. Transcriptional modulation of brain and hepatic estrogen receptor and P450arom isotypes in juvenile Atlantic salmon (Salmo salar) after waterbome exposure to the xenoestrogen, 4-nonylphenol. Aquat Toxicol. 2006;77:167–77.

    Article  PubMed  CAS  Google Scholar 

  65. Matsunaga H, Mizota K, Uchida H, Uchida T, Ueda H. Endocrine disrupting chemicals bind to a novel receptor, microtubule-associated protein 2, and positively and negatively regulate dendritic outgrowth in hippocampal neurons. J Neurochem. 2010;114(5):1333–43.

    PubMed  CAS  Google Scholar 

  66. Kim K. Differential expression of neuronal and inducible nitric oxide synthase in rat brain after subchronic administration of 3-monochloro-1,2-propanediol. Food Chem Toxicol. 2008;46:955–60.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang YQ, Mao Z, Zheng YL, Han BP, Chen LT, Li J, Li F. Elevation of inducible nitric oxide synthase and cyclooxygenase-2 expression in the mouse brain after chronic nonylphenol exposure. Int J Mol Sci. 2008;9:1977–88.

    Article  PubMed  CAS  Google Scholar 

  68. Karageorgos N, Patsoukis Nc, Chroni E, Konstantinou D, Assimakopoulos SF, Georgioui C. Effect of N-acetylcysteine, allopurinol and vitamin E on jaundice-induced brain oxidative stress in rats. Brain Res. 2006;1111(1):203–12.

    Article  PubMed  CAS  Google Scholar 

  69. Aydogan M, Korkmaz A, Barlas N, Kolankaya D. The effect of vitamin C on bisphenol A, nonylphenol and octylphenol induced brain damages of male rats. Toxicology. 2008;249:35–9.

    Article  PubMed  CAS  Google Scholar 

  70. Avcı G, Uğuz C, Bayram İ, Erdoğan M, Küçükkurt İ, Dosay Akbulut M, Özdemir M, Lenger ÖF, İşcan M, Togan İ. Effects of nonylphenol on growth parameters and antioxidant defense system in Japanese quails (Coturnix japonica). Kafkas Univ Vet Fak Derg. 2010;16(4):537–46.

    Google Scholar 

  71. Mao Z, Zheng YL, Zhang YQ, Han BP, Chen LT, Li J, Li F, Shan Q. Chronic application of nonylphenol-induced apoptosis via suppression of bcl-2 transcription and up-regulation of active caspase-3 in mouse brain. Neurosci Lett. 2008;439:147–52.

    Article  PubMed  CAS  Google Scholar 

  72. Mao Z, Zheng YL, Zhang YQ. Behavioral impairment and oxidative damage induced by chronic application of nonylphenol. Int J Mol Sci. 2010;12(1):114–27.

    Article  PubMed  Google Scholar 

  73. Nakazawa K, Ohno Y. Modulation by estrogens and xenoestrogens of recombinant human neuronal nicotine receptors. Eur J Pharmacol. 2001;430:175–83.

    Article  PubMed  CAS  Google Scholar 

  74. Ton C, Lin Y, Willett C. Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res A Clin Mol Teratol. 2006;76(7):553–67.

    Article  PubMed  CAS  Google Scholar 

  75. Huang M-Y, Yu L-l, Duan R-Y, Wang Q. Effects of nonylphenol on Rana nigromaculata nerve action. Chinese J Ecol. 2009;28(8):1510–4.

    CAS  Google Scholar 

  76. Bevan CL, Porter DM, Prasad A, Howard MJ, Henderson LP. Endocrine disruptors alter early development in Xenopus laevis. Environ Health Perspect. 2003;111:488–96.

    Article  PubMed  CAS  Google Scholar 

  77. Bevan CL, Porter DM, Schumann CR, Bryleva EY, Hendershot TJ, Liu H, Howard MJ, Henderson LP. The endocrine-disrupting compound, nonylphenol, inhibits neurotrophin-dependent neurite outgrowth. Endocrinology. 2006;147:4192–204.

    Article  PubMed  CAS  Google Scholar 

  78. Khan SZ, Kirk CJ, Michelangeli F. Alkylphenol endocrine disrupters inhibit IP3-sensitive Ca2+ channels. Biochem Biophys Res Commun. 2003;310:261–6.

    Article  PubMed  CAS  Google Scholar 

  79. Kim SK, Kim BK, Shim JH, Gil JE, Yoon YD, Kim JH. Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas-Fas ligand pathway. Toxicol Sci. 2006;94:310–21.

    Article  PubMed  CAS  Google Scholar 

  80. Talorete TPN, Isoda H, Maekawa T. Alkylphenolic compounds and their effect on the injury rate, survival and acetylcholinesterase activity of the rat neuronal cell line PC12. Cytotechnology. 2001;36:163–9.

    Article  PubMed  CAS  Google Scholar 

  81. Li MH. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere. 2008;70(10):1796–803.

    Article  PubMed  CAS  Google Scholar 

  82. Jones SB, King LB, Sappington LC, Dwyer FJ, Ellersieck M, Buckler DR. Effects of carbaryl, permethrin, 4-nonylphenol, and copper on muscarinic cholinergic receptors in brain of surrogate and listed fish species. Comp Biochem Physiol. 1998;120C:405–14.

    CAS  Google Scholar 

  83. Xia J, Niu C, Pei X. Effects of chronic exposure to nonylphenol on locomotor activity and social behavior in zebrafish (Danio rerio). J Environ Sci (China). 2010; 22(9):1435–40.

    Article  CAS  Google Scholar 

  84. Flynn KM, Newbold RR, Ferguson SA. Multigenerational exposure to dietary nonylphenol has no severe effects on spatial learning in female rats. Neurotoxicology. 2002;23:87–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jie, X., JianMei, L., Zheng, F. et al. Neurotoxic effects of nonylphenol: a review. Wien Klin Wochenschr 125, 61–70 (2013). https://doi.org/10.1007/s00508-012-0221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-012-0221-2

Keywords

Schlüsselwörter

Navigation