Skip to main content
Log in

Strategien und Potenziale zur Energieoptimierung bei der Wasserwiederverwendung

Strategies and opportunities for energy optimization in recycling water

  • Originalarbeit
  • Published:
Österreichische Wasser- und Abfallwirtschaft Aims and scope

Zusammenfassung

Die energetische und stoffliche Nutzung von gereinigtem Abwasser erlangt weltweit zunehmende Bedeutung und dieses wird somit immer mehr als Ressource anstatt als Entsorgungsproblem gesehen. Dieser Trend ist auch an dem wachsenden Interesse einer Wasserwiederverwendung kommunalen Abwassers für Nicht-Trinkwasserzwecke sowie zur Stützung der Trinkwasserversorgung sichtbar. Allerdings ist gerade bei der Wasserwiederverwendung zur Trinkwasserversorgung der spezifische Energieverbrauch mit ca. 0,9–1,8 kWh/m³ nicht unerheblich. Aufgrund des Fehlens von national wie international einheitlichen gesetzlichen Anforderungen an die Wasserqualität bei der Wasserwiederverwendung gibt es weltweit sehr unterschiedliche technische Lösungen bei den zum Einsatz kommenden Aufbereitungsverfahren. Damit beschränken sich Energieeinsparmaßnahmen häufig auf interne Betriebsoptimierungen und die zu erzielenden Einsparpotenziale sind häufig als eher marginal einzustufen. Vielversprechender sind daher Strategien zur integrierten Energierückgewinnung, der verstärkten Nutzung anaerober biologischer Verfahren und Wärme-Kraft-Kopplungen bei der Wasserwiederverwendung. Diese bieten Möglichkeiten der internen Energiebereitstellung und damit Optionen, trotz des Einsatzes weitergehender Aufbereitungsprozesse den spezifischen Energiebedarf einer Wasserwiederverwendung zur Trinkwasserstützung deutlich unter 1 kWh/m³ zu senken. Das größte Potenzial für eine energieeffizientere Wasserwiederverwendung liegt allerdings auf der regionalen Planungsebene. Eine Wasserwiederverwendung ist gerade dort attraktiv, wo lokal keine ausreichenden Süßwasserressourcen zur Verfügung stehen oder die Wasserversorgung von importiertem Wasser abhängt, und bietet im Vergleich zur Aufbereitung von Brackwasser oder Meerwasser eine deutlich wirtschaftlichere Option.

Abstract

The energy and materials derived from treating sewage are becoming increasingly important worldwide and are thus progressively considered resources rather than a disposal problem. This is also apparent in the growing interest in recycling water from municipal wastewater for both non-potable and potable purposes, supplementing the drinking water supply in the latter case. However, the energy consumption of about 0.9–1.8 kWh/m³, required to recycle drinking water, is not insignificant. Due to the lack of national as well as international standardized regulatory specifications for recycled water quality, very different technical solutions for potable water reuse have been deployed worldwide. Therefore, energy-saving measures often can only be applied to internal operational optimizations and the achievable savings are rather limited. Strategies for integrated energy recovery, the increased use of anaerobic biological processes and combined heat and power (CHP) for water recycling are hence very promising. These provide opportunities for internal power provision and therefore options to reduce the specific energy requirements for potable water reuse to well below 1 kWh/m³, despite the necessary treatment processes. However, the greatest potential for energy-efficient water recycling is at the regional planning level. Recycling water is only attractive where local freshwater resources are insufficient or there is a dependency on imported water, and it is the significantly more cost-effective option than the treatment of brackish or sea water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

AOC:

Assimilable organic carbon (assimilierbarer organischer Kohlenstoff)

AOP:

Advanced oxidation processes (weitergehende Oxiadationsverfahren)

BAC:

Biological activated carbon process (biologischer Aktivkohlefilter)

BDOC:

Biodegradable dissolved organic carbon (biologisch abbaubarer gelöster organischer Kohlenstoff)

CANDO:

Coupled Aerobic Anoxic Nitrous Decomposition Operation (gekoppelter aeroben:anoxischer Stickstoffabbau)

CO2 :

Kohlenstoffdioxid

CSB:

Chemischer Sauerstoffbedarf

DOC:

Dissolved organic carbon (gelöster organischer Kohlenstoff)

Literatur

  • Altmann, J., Ruhl, A.S., Zietzschmann, F. and Jekel, M. (2014): Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Research 55, 185–193.

    Article  Google Scholar 

  • Asano, T., Leverenz, H.L., Tsuchihashi, R., Tchobanoglous, G. (2007): Water Reuse. New York: McGraw-Hill.

    Google Scholar 

  • Bellona C., Oelker, G., Luna, J., Filteau, G., Amy, G., Drewes, J.E. (2008): Comparing nanofiltration and reverse osmosis for drinking water augmentation. J. American Water Works Association 100:9, 102–116.

    Google Scholar 

  • Bellona, C., Heil, D., Yu, C., Fu, P., Drewes, J. E. (2012): The pros and cons of using nanofiltration in lieu of reverse osmosis for indirect potable reuse applications. Separation and Purification Technology 85. 69–76.

  • Bolle, F. und Pinnekamp, J. (2015): Energiebedarf von Verfahren zur Elimination von organischen Spurenstoffen – Phase II. Abschlußbericht Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen Aktenzeichen IV-7-042 600 003 J.

  • Betancourt, W.Q., Kitajima, M., Wing, A.D., Regnery, J., Drewes, J.E., Pepper, I.L., Gerba, C.P. (2014): Assessment of Virus Removal by Managed Aquifer Recharge at Three Full-scale Operations. J. Environmental Science and Health, Part A 49, 1685–1692.

    Article  Google Scholar 

  • Buffle, M. O., & Von Gunten, U. 2006. Phenols and amine induced HO center dot generation during the initial phase of natural water ozonation. Environmental Science & Technology 40(9), 3057–3063.

    Article  Google Scholar 

  • Daigger, G. T. (2009): Evolving urban water and residuals management paradigms: Water reclamation and reuse, decentralization, and resource recovery. Water Environ. Res. 81(8), 809–823.

    Article  Google Scholar 

  • Daigger, G. T. (2012): Designing and implementing urban water and resource management systems which recover water, energy, and nutrients. Lazarova, V., Choo, K., Cornel, P. (eds): Water-Enery Interactions in Water Reuse. IWA Publishing. London, UK.

  • Drewes, J. E., Reinhard, M., Fox, P. (2003): Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water. Water Research 37, 3612–3621.

    Article  Google Scholar 

  • Drewes, J.E. and Khan, S. (2011): Water Reuse for Drinking Water Augmentation. J. Edzwald (ed.): Water Quality and Treatment, 6th Edition. 16.1–16.48. American Water Works Association. Denver, Colorado.

  • Drewes, JE and Khan, S. (2015): Contemporary Design, Operation and Monitoring of Potable Reuse Systems. J. Water Reuse and Desalination 5(1), 2–7.

    Article  Google Scholar 

  • Drewes, J.E. und Horstmeyer, N. (2015): Recent Developments in Potable Reuse. Hdb Env Chem, Springer International Publishing, Switzerland (DOI 10.1007/698_2015_341).

    Google Scholar 

  • Hammes, F., Salhi, E., Köster, O., Kaiser, H.-P., Egli, T., & von Gunten, U. (2006): Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Research 40(12), 2275–2286.

    Article  Google Scholar 

  • Heidrich, E.S., Curtis, T.P., Dolfing, J. (2011): Determination of the Internal Chemical Energy of Wastewater. Environmental Science & Technology 45, 827–832.

  • Hering, J.G., Waite, T.D., Luthy, R.G., Drewes, J.E., Sedlak, D.L. (2013): A changing framework for urban water systems. Environmental Science and Technology 47(19): 10721–10726.

    Article  Google Scholar 

  • Hollender, J., Zimmermann, S. G., Koepke, S., Krauss, M., McArdell, C. S., Ort, C., Singer, H., von Gunten, U., & Siegrist, H. 2009. Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environmental Science & Technology 43(20), 7862–7869.

    Article  Google Scholar 

  • Hoppe-Jones, C., Oldham, G., and Drewes, J.E. (2010): Attenuation of Total Organic Carbon and Unregulated Trace Organic Chemicals in U.S. Riverbank Filtration Systems. Water Research 44, 4643–4659.

    Article  Google Scholar 

  • Hübner, U., Miehe, U., Jekel, M. (2012): Optimized removal of dissolved organic carbon and trace organic contaminants during combined ozonation and artificial groundwater recharge. Water Research 46(18), 6059–6068.

    Article  Google Scholar 

  • Jekel, M., Dott, W., Bergmann, B., Dunnbier, U., Gnirss, R., Haist-Gulde, B., Hamscher, G., Letzel, M., Licha, T., Lyko, S., Miehe, U., Sacher, F., Scheurer, M., Schmidet, C.K., Reemtsma, T., Ruhl, A.S. (2015): Selection of organic process and source indicator substances for the anthropogenically influenced water cycle. Chemosphere 125, 155–167.

  • Jimenez, B. und Asano, T. (2008): Water Reuse. An international survey on practice, issues and needs. Scientific and Technical Report No. 20. IWA Publishing, London, U.K.

    Google Scholar 

  • Joss, A., Zabcynsnki, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, C.S., Ternes, T.A., Thomsen, A., Siegrist, H. (2006): Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research 40(8), 1686–1696.

  • Juby, G. (2013): Starting over: Moving closer to energy independence in water reclamation. Water Environment and Technology 25, 52–56.

    Google Scholar 

  • Judd, S. (2006): The MBR book. ISBN 978-1-85-617481-7 Elsevier.

  • Khan, S.J. (2013): Drinking Water Through Recycling: The Benefits and Costs of Supplying Direct to the Distribution System. Australian Academy of Technological Sciences and Engineering (ATSE), Melbourne, Victoria, Australia.

  • Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P.L., Bae, J. (2011): Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environmental Science & Technology 45, 576–581.

  • Koch, K., Weißbach, M., Leiz, C., Horstmeyer, N., Drewes, J.E. (2014): Gezielte Erzeugung von Lachgas als alternative Behandlung stickstoffreicher Abwasserteilströme einschließlich einer Energierückgewinnung. Umwelttechnologie und Energie in Bayern. 62–65.

  • Lazarova, V., Choo, K., Cornel, P. (2012): Water-Enery Interactions in Water Reuse. IWA Publishing. London, UK.

    Google Scholar 

  • Lekkerkerker, K., Scheideler, J., Maeng, S.K., Ried, A., Verberk, J.Q.J.C., Knol, A.H., Amy, G., & Van Dijk, J.C. 2009. Advanced oxidation and artificial recharge: A synergistic hybrid system for removal of organic micropollutants. Water Science & Technology: Water Supply 9(6), 643–651.

    Google Scholar 

  • Lettinga, G. (2001): Digestion and degradation, air for life. Water Science and Technology, 44, 157–176.

  • Martinez, D. (2011): Anaerobic Submerged Membrane Bioreactor (MBR) treating municipal wastewater under mesophilic and psychrophilic temperature conditions. Berichte aus der Siedlungswasserwirtschaft, Technische Universität München, Band Nr. 205, ISSN 0942-914X.

  • Massmann, G., Heberer, T., Grützmacher, G., Dünnbier, U., Knappe, A., Meyer, H., Mechlinski, A., Pekdeger, A. (2007): Trinkwassergewinnung in urbanen Räumen – Erkenntnisse zur Uferfiltration in Berlin. Grundwasser 12: 232–245.

    Article  Google Scholar 

  • McCarty, P.L. (2001): The development of anaerobic treatment and its future. Water Science and Technology 44, 149–156.

    Google Scholar 

  • MUNLV (1999): Handbuch Energie in Kläranlagen. Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen, Düsseldorf.

  • National Research Council (2012): Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater. Washington, DC: The National Academies Press. doi:10.17226/13303.

    Google Scholar 

  • Regnery, J., Lee, J., Kitanidis, P., Illangasekare, T., Sharp, J.O., Drewes, J.E. (2013): Integration of Managed Aquifer Recharge for Impaired Water Sources in Urban Settings – Overcoming Current Limitations and Engineering Challenges. Environmental Engineering Science 30(8), 409–420.

    Article  Google Scholar 

  • Remy, C., Boulestreau, B., Lesjean, B. (2014): Technischer Nachweis eines innovativen Konzepts für ein energie-positives Klärwerk. 47. Essener Tagung für Wasser- und Abfallwirtschaft, Band 234, ISSN 0342–6068. Aachen, 2014.

  • Reungoat, J., Escher, B. I., Macova, M., Argaud, F. X., Gernjak, W., & Keller, J. 2012. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 46(3), 863–72.

    Article  Google Scholar 

  • Sanz, L. und Gawlik, B. (2014): Water Reuse in Europe. Relevant guidelines, needs for and barriers to innovation. JRC Science and Policy Reports. European Commission, Brüssel.

    Google Scholar 

  • Scherson, Y. und Criddle, C. (2014): Recovery of freshwater from wastewater: Upgrading process configurations to maximize energy recovery and minimize residuals. Environmental Science & Technology 48, 5612–5619.

    Article  Google Scholar 

  • Scherson, Y., Woo, S., Criddle, C. (2014): Production of Nitrous Oxide from Anaerobic Digester Centrate and its Use as a Co-oxidant of Biogas to Enhance Energy Recovery. Environmental Science and Technology 48, 5612–5619.

    Article  Google Scholar 

  • Seghezzo, L., Zeeman, G., van Lier, J.B., Hamelers, H.V.M., Lettinga, G. (1998): A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology, 65, 175–190.

    Article  Google Scholar 

  • Tchobanoglous, G., Cotruvo, J., Crook, J., McDonald, E., Olivieri, A., Salveson, A, Trussell, S. (2015): Framework for Direct Potable Reuse. WateReuse Research Foundation, Alexandria, VA.

  • van Lier, J.B., Rebac, S., Lettinga, G. (1997): High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Science and Technology 35, 199–206.

    Google Scholar 

  • von Sonntag, C. 2008. Advanced oxidation processes: mechanistic aspects. Water Science & Technology 58(5), 1015–1021.

    Article  Google Scholar 

  • WateReuse Research Foundation (2013): Energy Efficiency in Water Reuse and Desalination. Energy Research and Development Division, California Energy Commission. Final Project Report. WateReuse Research Foundation. Alexandria, VA. May 2013.

  • Worch, E. (2012): Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, De Gruyter, Berlin, Boston.

    Book  Google Scholar 

  • Yangali-Quintanilla, V., Maeng, S.K., Fujioka, T., Kennedy, M., Amy, G. (2010): Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. Journal of Membrane Science 362, 334–345.

    Article  Google Scholar 

  • Yavich, A. A., Lee, K. H., Chen, K. C., Pape, L., and Masten, S. J. 2004. Evaluation of biodegradability of NOM after ozonation. Water Research 38(12), 2839–2846.

    Article  Google Scholar 

  • Zietzschmann, F., Müller, J., Sperlich, A., Ruhl, A.S., Meinel, F., Altmann, J. and Jekel, M. (2014b): Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater. Water Science & Technology 70(7), 1271–1278.

    Article  Google Scholar 

  • Zoschke, K., Engel, C., Bornick, H. and Worch, E. (2011): Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: Influence of NOM and process modelling. Water Research 45(15), 4544–4550.

    Article  Google Scholar 

  • Zucker, I., Mamane, H., Cikurel, H., Jekel, M., Hübner, U., & Avisar, D. (2015): A hybrid process of biofiltration of secondary effluent followed by ozonation and short soil aquifer treatment for water reuse. Water Research 84, 315–322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg E. Drewes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drewes, J.E., Horstmeyer, N. Strategien und Potenziale zur Energieoptimierung bei der Wasserwiederverwendung. Österr Wasser- und Abfallw 68, 99–107 (2016). https://doi.org/10.1007/s00506-016-0298-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00506-016-0298-3

Navigation