Abstract
The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear dynamic effects of hydraulic valves such as slew rate limitations and time delays arising in the electrical and mechanical amplification stages limits the applicability of such methods, and may lead to partial losses of robustness and limit cycles/oscillations in the outputs, internal states and the valve input signals. The application of some popular second order sliding mode controllers and their smooth counterparts are analyzed and experimentally verified. The controllers are considered for output feedback control and compared with a conventional PI control approach. The controllers under consideration are applied for position tracking control of a hydraulic valve-cylinder drive exhibiting strong variations in inertia- and gravitational loads, and furthermore suffer from profound valve dynamics. Results demonstrate that both the twisting- and super twisting algorithms may be successfully applied for this purpose, when continuous approximations of discontinuous are utilized, and furthermore that excellent performance may be achieved when applying their smooth counterparts directly.
Zusammenfassung
Die Anwendung von Sliding-Mode-Algorithmen zweiter Ordnung für die Ausgabesteuerung in hydraulischen Zylinder-Antrieben mit tiefgreifender Ventildynamik erweist sich aufgrund folgender Eigenschaften als attraktiv: einfache Realisierung und Parametrisierung und eine starke Robustheit gegenüber begrenzten Parametervariationen und Unsicherheiten. Allerdings begrenzen intrinsische nichtlineare dynamische Effekte von Hydraulikventilen wie Einschränkungen der Anstiegsgeschwindigkeit und Zeitverzögerungen in den elektrischen und mechanischen Verstärkungsstufen die Anwendbarkeit solcher Verfahren. Dies kann zu partiellen Verlusten an Robustheit führen und Grenzzyklen/Schwingungen in den Ausgaben, internen Stadien und die Ventileingangssignale begrenzen. Die Anwendung von einigen populären Sliding-Mode-Steuerungen zweiter Ordnung und deren ebenen Pendants sind analysiert und experimentell verifiziert. Die Regler sind für die Regelung der Ausgaben bestimmt und werden mit einem herkömmlichen PI-Regelungsansatz verglichen. Die zu betrachtenden Regler werden zur Kontrolle der Positionsverfolgung eines hydraulischen Ventil-Zylinder-Antriebs verwendet, der starke Schwankungen in Trägheits- und Gravitationslasten aufweist. Außerdem treten Probleme mit profunder Ventildynamik auf. Die Ergebnisse zeigen, dass sowohl die Twisting- als auch Super Twisting-Algorithmen erfolgreich für diesen Zweck eingesetzt werden können, falls Folgendes gewährleistet ist: eine kontinuierliche Annäherung von Diskontinuierlichem. Darüber hinaus besteht die Aussicht, eine ausgezeichnete Leistung zu erzielen, wenn deren ebene Pendants direkt Anwendung finden.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- \(A_{A}\) :
-
Piston area on \(A\)-side [m2]
- \(A_{B}\) :
-
Piston area on \(B\)-side [m2]
- \(a_{d}\) :
-
Oscillation amplitude [–]
- \(a_{\mathit{sr}}\) :
-
Valve slew rate limit [m/s]
- \(B_{v}\) :
-
Viscous damping coefficient [N s/m]
- \(C_{L}\) :
-
Leakage coefficient [m3/s/Pa]
- \(C_{\mathit{Ll}}\) :
-
Leakage coefficient [m3/s/Pa]
- \(C_{\mathit{Ls}}\) :
-
Leakage coefficient [m3/s/Pa]
- \(e\) :
-
Position control error [m]
- \(F_{\mathit{ad}}\) :
-
Load force [N]
- \(F_{\mathit{ext}}\) :
-
External disturbance force [N]
- \(F_{f}\) :
-
Friction forces [N]
- \(F_{G}\) :
-
Force due to gravity [N]
- \(K_{p}\) :
-
Pressure gain [Pa/s/m3]
- \(K_{Q}\) :
-
Pres. dependent flow gain [m3/(s V)]
- \(K_{vA}\) :
-
Flow gain of valve port \(A\) [\(\mbox{m}^{3}/(\mbox{s}\sqrt{\mbox{Pa}}\,\mbox{V})\)]
- \(K_{vB}\) :
-
Flow gain of valve port \(B\) [\(\mbox{m}^{3}/(\mbox{s}\sqrt{\mbox{Pa}}\,\mbox{V})\)]
- \(K_{v}\) :
-
Equivalent valve flow gain [\(\mbox{m}^{3}/(\mbox{s}\sqrt{\mbox{Pa}}\,\mbox{V})\)]
- \(M_{\mathit{eq}}\) :
-
Equivalent inertia load [kg]
- \(P_{A}\) :
-
Pressure in \(A\)-chamber [Pa]
- \(P_{B}\) :
-
Pressure in \(B\)-chamber [Pa]
- \(P_{L}\) :
-
Cylinder load pressure [Pa]
- \(P_{S}\) :
-
Supply pressure [Pa]
- \(P_{T}\) :
-
Tank pressure [Pa]
- \(\Delta P_{\mathit{AB}}\) :
-
Pressure difference [Pa]
- \(Q_{A}\) :
-
Flow through flow port \(A\) [\(\mbox{m}^{3}/\mbox{s}\)]
- \(Q_{B}\) :
-
Flow through flow port \(B\) [\(\mbox{m}^{3}/\mbox{s}\)]
- \(Q_{L}\) :
-
Cross port leakage flow [\(\mbox{m}^{3}/\mbox{s}\)]
- \(u_{v}\) :
-
Valve control input [V]
- \(v\) :
-
Control input [V]
- \(V_{A0}\) :
-
Initial volume of \(A\)-chamber [m3]
- \(V_{B0}\) :
-
Initial volume of \(B\)-chamber [m3]
- \(\mathbf{x}\) :
-
State vector
- \(x_{P}\) :
-
Piston position [m]
- \(x_{R}\) :
-
Piston position reference [m]
- \(x_{v}\) :
-
Valve spool position [m]
- \(z, \bar{z}\) :
-
Auxiliary variables [m/s]
- \(\alpha\) :
-
Control gain
- \(\beta\) :
-
Control gain
- \(\beta_{e}\) :
-
Eff. oil/hose bulk modulus [Pa]
- \(\delta\) :
-
Control parameter
- \(\sigma\) :
-
Valve flow gain ratio [–]
- \(\mu\) :
-
Cylinder area ratio [–]
- \(\omega_{v}\) :
-
Valve bandwidth [rad/s]
- \(\zeta_{v}\) :
-
Valve damping ratio [–]
- \(\varrho\) :
-
Cylinder volume ratio [–]
- \(\tau_{d}\) :
-
Oscillation period [s]
- \(\tau_{p}\) :
-
Time constant of pres. dyn. [s]
- \(\xi\) :
-
Model disturbance [m/s]
- \(\varXi\) :
-
Parameter bound [m/s]
- \(\bar{\varXi}\) :
-
Parameter bound [m/s2]
- \(\Delta t\) :
-
Time delay [s]
- \(\phi\) :
-
Homogeneity degree
- \(\varLambda\) :
-
Inv. hydraulic capacitance [Pa/m3]
References
Bacciotti, A., Rosier, L. (2005): Liapunov functions and stability in control theory. London: Springer.
Bhat, P. S., Bernstein, S. D. (2005): Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst., 17(2), 101–127.
Fridman, L., Moreno, J., Iriarte, R. (2012): Sliding modes after the first decade of the 21st century. Lecture notes in control and information sciences (Vol. 412). Berlin: Springer.
Fung, R.-F., Wang, Y.-C., Yang, R.-T., Huang, H.-H. (1997): A variable structure control with proportional and integral compensators for electrohydraulic position servo control system. Mechatronics, 7(1), 67–81.
Ghazali, R., Sam, Y. M., Rahmat, M. F., Hashim, A. W. I. M., Zulfatman (2010): Position tracking control of an electro-hydraulic servo system using sliding mode control. In Proceedings of 2010 IEEE student conference on research and development, SCOReD 2010.
Guo, H. B., Liu, Y. G., Liu, G. R., Li, H. R. (2008): Cascade control of a hydraulically driven 6-dof parallel robot manipulator based on a sliding mode. Control Eng. Pract., 16(9), 1055–1068.
Habibi, S. R. (1995): Sliding mode control of a hydraulic industrial robot. In Proceedings of the American control conference (pp. 1523–1527).
Hansen, M. R., Andersen, T. O., Pedersen, H. C. (2005): Robust control of a hydraulically actuated manipulator using sliding mode control. In Proceedings of the 6th international conference on fluid power transmission and control.
Hwang, C. L., Lan, C. H. (1994): The position control of electrohydraulic servomechanism via a novel variable structure control. Mechatronics, 4(4), 369–391.
Komsta, J., Antoszkiewicz, P., Heeg, T., Adamy, J. (2010): New nonlinear robust control concept for electro-hydraulic drives. In Proceedings of the 7th international fluid power conference.
Levant, A. (1993): Sliding order and sliding accuracy in sliding mode control. Int. J. Control, 58(6), 1247–1263.
Levant, A. (1996): Higher order sliding modes as a natural phenomenon in control theory. In F. Garofalo, L. Glielmo (Eds.), Robust control via variable structure and Lyapunov techniques. Lecture notes in control and information sciences (Vol. 217, pp. 107–133). Berlin: Springer.
Levant, A. (1998): Arbitrary-order sliding modes with finite-time convergence. In Proceedings of the 6th IEEE Mediterranean conference on control and systems.
Levant, A. (2003): Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control, 76(9/10), 924–941.
Liu, Y., Handroos, H. (1999): Sliding mode control for a class of hydraulic position servo. Mechatronics, 9(1), 111–123.
Merritt, H. E. (1967): Hydraulic control systems. New York: Wiley.
Kroll, A., Jelali, M. (2004): Hydraulic servo systems. Berlin: Springer. ISBN 1-85233-692-7
Pi, Y., Wang, X. (2010): Observer-based cascade control of a 6-dof parallel hydraulic manipulator of a 6-dof hydraulic parallel robot manipulator in joint space coordinate. Mechatronics, 20, 648–655.
Pi, Y., Wang, X. (2011): Trajectory tracking control of a 6-dof hydraulic parallel robot manipulator with uncertain load disturbances. Control Eng. Pract., 19(2), 185–193.
Schmidt, L., Andersen, T. O., Pedersen, H. C. (2013): Robust non-chattering observer based sliding control concept for electro-hydraulic drives. In Proceedings of the 6th IFAC symposium on mechatronic systems.
Schmidt, L., Andersen, T. O., Pedersen, H. C., Bech, M. M. (2012): 2-smc of electro-hydraulic drives using the twisting algorithm. Appl. Mech. Mater., 233, 131–134.
Schmidt, L., Andersen, T. O., Pedersen, H. C., Bech, M. M. (2013): Second order sliding mode control with prescribed convergence law for electro-hydraulic drives. In Proceedings of the ICFP 2013, the 8th international conference on fluid power transmission and control, FPTC.
Schmidt, L. (2013): Robust control of industrial hydraulic cylinder drives—with special reference to sliding mode- and finite-time control. PhD thesis, Department of Energy Technology, Aalborg University, Denmark.
Schmidt, L., Andersen, T. O., Pedersen, H. C. (2013): An approach for second order control with finite time convergence for electro-hydraulic drives. In Proceedings of ASME/Bath 2013 symposium on fluid power and motion control.
Schmidt, L., Andersen, T. O., Pedersen, H. C. (2014): On application of second order sliding mode control to electro-hydraulic systems. In 12th biennial conference on engineering systems design and analysis.
Shtessel, Y., Edwards, C., Fridman, L., Levant, A. (2014): Sliding mode control and observation: control engineering. New York: Birkhäuser.
Shtessel, Y. B., Shkolnikov, I. A., Levant, A. (2007): Smooth second-order sliding modes: missile guidance application. Automatica, 43, 1470–1476.
Slotine, J. J. E., Li, W. (1991): Applied nonlinear control. Englewood Cliffs: Prentice-Hall.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmidt, L., Andersen, T.O. Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics. Elektrotech. Inftech. 133, 238–247 (2016). https://doi.org/10.1007/s00502-016-0425-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-016-0425-7