Skip to main content
Log in

Effects of ionizing radiation on integrated circuits

Effekte von ionisierender Strahlung auf integrierte Schaltungen

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

The composition and intensity of ionizing radiation heavily depends on the environment. Ionizing radiation is severe in space, but also terrestrial electronics must consider potential hazards e.g. radiation caused by energetic solar particle events. High energy protons, electrons and ions can lead to malfunction or damage of integrated circuits (IC). In this paper the dominant radiation effects to ICs are presented together with an overview of hardening techniques.

Zusammenfassung

Zusammensetzung und Intensität der ionisierenden Strahlung sind stark von der Anwendungsumgebung abhängig. Im Weltraum ist sie besonders intensiv, jedoch muss auch für elektronische Schaltungen in terrestrischen Applikationen die mögliche Gefahr der z. B. von Solaraktivität entstandenen ionisierenden Strahlung berücksichtigt werden. Hochenergetische Protonen, Elektronen oder Ionen können zu Störungen oder Beschädigungen führen. In dieser Arbeit werden die grundlegenden Effekte ionisierender Strahlung betrachtet sowie ein Überblick über aktuelle Techniken zur Reduktion ihrer Auswirkungen gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Amusan, O. A., et al. (2009): Mitigation techniques for single-event-induced charge sharing in a 90-nm bulk CMOS process. IEEE Trans. Device Mater. Reliab., 9(2), 311–317.

    Article  Google Scholar 

  2. Aubuchon, K. G. (1971): Radiation hardening of P-MOS devices by optimization of the thermal SiO2 gate insulator. IEEE Trans. Nucl. Sci., NS-18, 117.

    Article  Google Scholar 

  3. Autran, J. L., Balland, B., Barbottin, G. (1999): Charge pumping techniques—their use for diagnosis and interface state studies in MOS transistors. In G. Barbottin, A. Vapaille (Eds.), Instabilities in silicon devices, new insulators, devices and radiation effects (pp. 405–494). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  4. Barnaby, H. (2006): Total-ionizing-dose effects in modern CMOS technologies. IEEE Trans. Nucl. Sci., 53(6), 3103–3121.

    Article  Google Scholar 

  5. Calin, T., Nicolaidis, M., Velazco, R. (1996): Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci., 43(6), 2874–2878.

    Article  Google Scholar 

  6. Fahrner, W. R. (1999): An overview of radiation-matter interactions. In G. Barbottin, A. Vapaille (Eds.), Instabilities in silicon devices, new insulators, devices and radiation effects (pp. 577–579). Amsterdam: Elsevier.

    Google Scholar 

  7. Fleetwood, D. (1996): Fast and slow border traps in MOS devices. IEEE Trans. Nucl. Sci., 43(3), 779–786.

    Article  Google Scholar 

  8. Fleetwood, D., et al. (1995a): Border traps: issues for MOS radiation response and long-term reliability. Microelectron. Reliab., 35(3), 403–428.

    Article  Google Scholar 

  9. Fleetwood, D., et al. (1995b): Effects of interface traps and border traps on MOS postirradiation annealing response. IEEE Trans. Nucl. Sci., 42(6), 1698–1707.

    Article  Google Scholar 

  10. Gaillard, R. (2011): Soft errors in modern electronic systems. Frontiers in electronic testing.

    Google Scholar 

  11. Gregory, B. L. (1975): Process controls for radiation-hardened aluminum gate bulk silicon CMOS. IEEE Trans. Nucl. Sci., NS-22, 2295.

    Article  Google Scholar 

  12. Holmes-Siedle, A., Adams, L. (2007): Handbook of radiation effects. London: Oxford University Press.

    Google Scholar 

  13. Hughes, H. L., Benedetto, J. M. (2003): Radiation effects and hardening of MOS technology: devices and circuits. IEEE Trans. Nucl. Sci., 50(3), 500–521.

    Article  Google Scholar 

  14. Knoll, G. F. (2010): Radiation detection and measurement. 4th ed. New York: Wiley.

    Google Scholar 

  15. Kwon, J., Motta, A. T. (2000): Gamma displacement cross-sections in various materials. Ann. Nucl. Energy, 27, 1627–1642.

    Article  Google Scholar 

  16. Nowlin, N., Bailey, J., Turfler, B., Alexander, D. (2004): A total-dose hardening-by-design approach for high speed mixed-signal CMOS integrated circuits. Int. J. High Speed Electron. Syst., 14, 367–378.

    Article  Google Scholar 

  17. Oldham, T. R., McLean, F. B. (2003): Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci., 50(3), 483–498.

    Article  Google Scholar 

  18. Pan, D., Li, H., Wilamowski, B. (2003): A radiation-hard phase-locked loop. In ISIE’03, pp. 901–906.

    Google Scholar 

  19. Peel, J. L., Kinoshita, G. (1972): Radiation-hardened complementary MOS using SiO2 gate insulators. IEEE Trans. Nucl. Sci., NS-19, 271.

    Article  Google Scholar 

  20. Schroder, D. (2006): Semiconductor material and device characterization. New York: Wiley.

    Google Scholar 

  21. Shaneyfelt, M. R., Dodd, P. E., Draper, B. L., Flores, R. S. (1998): Challenges in hardening technologies using shallow-trench isolation. IEEE Trans. Nucl. Sci., 45, 2584.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varvara Bezhenova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezhenova, V., Michalowska-Forsyth, A.M. Effects of ionizing radiation on integrated circuits. Elektrotech. Inftech. 133, 39–42 (2016). https://doi.org/10.1007/s00502-015-0380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-015-0380-8

Keywords

Schlüsselwörter

Navigation