Skip to main content
Log in

Automatic vessel segmentation on fundus images using vessel filtering and fuzzy entropy

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Vessel segmentation is a critical and challenging task for fundus image processing, which is precursor and essential first step to further vessel measurement and diagnosis. This paper proposes a novel hybrid automatic vessel segmentation method for the delineation of vessels on fundus images. The method consists of two main steps including Hessian-based vessel filtering and vessel segmentation. In vessel filtering, multi-scale linear filtering based on Hessian matrix is adapted to enhance vessels in the image. After vessel filtering, a novel two-dimensional histogram of filtering image is generated. Then, the thresholds are determined by the fuzzy entropic concepts. We demonstrate the effectiveness of the proposed method on real fundus images from DRIVE database. Quantification analysis is applied through three metrics with respect to manual delineated ground truth from one specialist. Compared to three other methods, the proposed method yields more complete and accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abutaleb AS (1989) Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput Vis Gr Image Process 47:22–32. doi:10.1016/0734-189X(89)90051-0

    Article  Google Scholar 

  • Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 28:1488–1497

    Article  Google Scholar 

  • Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8:263–269. doi:10.1109/42.34715

    Article  Google Scholar 

  • Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51:625–628

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng HD, Chen YH, Jiang XH (2000) Thresholding using two-dimensional histogram and fuzzy entropy principle. IEEE Trans Image Process 9:732–735

    Article  Google Scholar 

  • Dufour A et al (2013) Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Med Image Anal 17:147–164

    Article  Google Scholar 

  • Espona L, Carreira MJ, Ortega M, Penedo MG (2007) A snake for retinal vessel segmentation. Lect Notes Comput Sci 4478:178–185

    Article  Google Scholar 

  • Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Medical image computing and computer-assisted interventation—MICCAI’98. Springer, Berlin, pp 130–137

  • Frangi AF, Niessen WJ, Nederkoorn PJ, Bakker J, Mali WPTM, Viergever MA (2001) Quantitative analysis of vascular morphology from 3D MR angiograms: in vitro and in vivo results. Magn Reson Med 45:311–322

    Article  Google Scholar 

  • Gang L, Chutatape O, Krishnan SM (2002) Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Trans Biomed Eng 49:168–172. doi:10.1109/10.979356

    Article  Google Scholar 

  • Kirbas C, Quek F (2002) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36:81–121

    Article  Google Scholar 

  • Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10:507–518. doi:10.1109/TIFS.2014.2381872

    Article  Google Scholar 

  • Lindeberg T (1994) Scale-space theory in computer vision. Springer, New York

    Book  MATH  Google Scholar 

  • Mendonça AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25:1200–1213

    Article  Google Scholar 

  • Shanmugam V, Wahida Banu RSD (2013) Retinal blood vessel segmentation using an extreme learning machine approach. In: 2013 point-of-care healthcare technologies, pp 318–321. doi:10.1109/PHT.2013.6461349

  • Su R, Sun C, Pham TD (2012) Junction detection for linear structures based on Hessian, correlation and shape information. Pattern Recogn 45:3695–3706. doi:10.1016/j.patcog.2012.04.013

    Article  Google Scholar 

  • Su R, Sun C, Zhang C, Pham TD (2014) A new method for linear feature and junction enhancement in 2D images based on morphological operation, oriented anisotropic Gaussian function and Hessian information. Pattern Recogn 47:3193–3208

    Article  Google Scholar 

  • Tian Q, Chen S (2017) Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238:286–295. doi:10.1016/j.neucom.2017.01.064

    Article  Google Scholar 

  • Vlachos M, Dermatas E (2010) Multi-scale retinal vessel segmentation using line tracking. Comput Med Imaging Gr 34:213–227

    Article  Google Scholar 

  • Voorn M, Exner U, Rath A (2013) Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Comput Geosci 57:44–53

    Article  Google Scholar 

  • Wang J, Li T, Shi Y-Q, Lian S, Ye J (2016) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tools Appl. doi:10.1007/s11042-016-4153-0

    Google Scholar 

  • Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406

    Article  Google Scholar 

  • Winder RJ, Morrow PJ, Mcritchie IN, Bailie JR, Hart PM (2009) Algorithms for digital image processing in diabetic retinopathy. Comput Med Image Gr 33:608–622. doi:10.1016/j.compmedimag.2009.06.003

    Article  Google Scholar 

  • Xia Z, Wang X, Sun X, Wang B (2014) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7:1283–1291

    Article  Google Scholar 

  • Xiaoyi J, Mojon D (2003) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25:131–137. doi:10.1109/TPAMI.2003.1159954

    Article  Google Scholar 

  • Yang Y, Huang S, Rao N (2012) An automatic hybrid method for retinal blood vessel extraction. Int J Appl Math Comput Sci 18:399–407

    MATH  Google Scholar 

  • Yin X, Ng BWH, He J, Zhang Y, Abbott D (2014) Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLoS ONE 9:e95943. doi:10.1371/journal.pone.0095943

    Article  Google Scholar 

  • Yuan C, Sun X, Lv R (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13:60–65. doi:10.1109/CC.2016.7559076

    Article  Google Scholar 

  • Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10:1010–1019

    Article  MATH  Google Scholar 

  • Zhang L, Li Q, You J, Zhang D (2009) A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans Inf Technol Biomed 13:528–534. doi:10.1109/TITB.2008.2007201

  • Zheng Y, Byeungwoo J, Xu D, Wu QMJ, Hui Z (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28:4024–4028

    Google Scholar 

  • Zhou Z, Jonathan Wu QM, Huang F, Sun X (2017a) Fast and accurate near-duplicate image elimination for visual sensor networks. Int J Distrib Sens Netw. doi:10.1177/1550147717694172

    Google Scholar 

  • Zhou Z, Wang Y, Wu QMJ, Yang CN, Sun X (2017b) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur 12:48–63. doi:10.1109/TIFS.2016.2601065

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant Nos. 61471075, 61671091), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAI11B10), Chongqing Integrated Demonstration Project (CSTC2013jcsf10029), Wenfeng Innovation Foundation of CQUPT, University Innovation Team Construction Plan Funding Project of Chongqing (Smart Medical System and Key Techniques, CXTDG201602009), Chongqing Key Laboratory Improvement Plan (Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, cstc2014pt-sy40001), Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjBX0057, cstc2017jcyjAX0328), Science and Technology research project of Chongqing Education Commission (KJ1704073), the Scientific Research Foundation of CQUPT(A2016-73), Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD) Fund, and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET) Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Anisetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jiang, Y., Jiang, X. et al. Automatic vessel segmentation on fundus images using vessel filtering and fuzzy entropy. Soft Comput 22, 1501–1509 (2018). https://doi.org/10.1007/s00500-017-2872-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2872-4

Keywords

Navigation