Skip to main content

Advertisement

Log in

Comparative proteomic analyses reveal the changes of metabolic features in soybean (Glycine max) pistils upon pollination

  • Original Paper
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Siphonogamy is a critical process in plant reproductive growth, during which numerous cell–cell interaction events occur between pistil and pollen. Previous studies in Solanaceae, Papaveraceae, and Brassicaceae focusing on pollen–stigma recognition in self-incompatible systems have provided many important views. In this study, we profiled the proteome in soybean mature pistils before and after pollination. Comparative analyses of two-dimensional gel electrophoresis maps from un-pollinated and pollinated pistils were conducted. The results showed that 22 proteins were increased and 36 proteins decreased after pollination. Functional categorization showed that most of them were metabolism- and redox-related proteins. The enhancement of primary metabolism, biosynthesis of pollen tube guidance compounds, and adjustment of redox homeostasis system might be helpful for a successful pollination. Quantitative reverse transcript-polymerase chain reaction analysis implied that the regulation of gene expression might happen at both transcriptional and posttranscriptional levels during pollination. This study will enhance our understanding of pollen–stigma interaction in plant sexual reproductive growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahsan N, Komatsu S (2009) Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 9:4889–4907

    Article  PubMed  CAS  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brugière N, Dubois F, Limamia AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2011

    PubMed  Google Scholar 

  • Canovas FM, Avila C, Canton FR, Canas RA, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58:2307–2318

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Baluška F, Šamaj J (2006) Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J 47:174–195

    Article  PubMed  CAS  Google Scholar 

  • Chi F, Yang PF, Han F, Jing YX, Shen SH (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2006a) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cellul Proteomics 6:207–230

    Article  Google Scholar 

  • Dai SJ, Li L, Chen TT, Chong K, Xue YB, Wang T (2006b) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529

    Article  PubMed  CAS  Google Scholar 

  • Fiebig A, Mayfield AJ, Miley NL, Chaub S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    PubMed  CAS  Google Scholar 

  • Goring DR, Walker JC (2004) Plant sciences. Self-rejection—a new kinase connection. Science 303:1474–1475

    Article  PubMed  CAS  Google Scholar 

  • Haerizadeh F, Wong CE, Bhalla PL, Gresshoff PM, Singh MB (2009) Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol 9:25

    Article  PubMed  Google Scholar 

  • Han B, Chen S, Dai S, Yang N, Wang T (2010) Isobaric tags for relative and absolute quantification-based comparative proteomics reveals the features of plasma membrane-associated proteomes of pollen grains and pollen tubes from Lilium davidii. J Integr Plant Biol 52:1043–1058

    Article  PubMed  CAS  Google Scholar 

  • Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol 179:286–317

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  • Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S (2007) Two distinct forms of M-Locus protein kinase localize to the plasma membrane and interact directly with S-Locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell Online 19:3961–3973

    Article  CAS  Google Scholar 

  • Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132:517–529

    Article  PubMed  CAS  Google Scholar 

  • Ma H (2003) Plant reproduction: GABA gradient, guidance and growth. Cur Biol 13:R834–R836

    Article  CAS  Google Scholar 

  • Mayfield JA, Fiebig A, Johnstone SE, Preuss D (2001) Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292:2482–2485

    Article  PubMed  CAS  Google Scholar 

  • McInnis SM, Desikan R, Hancock JT, Hiscock SJ (2006) Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol 172:221–228

    Article  PubMed  CAS  Google Scholar 

  • Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519

    Article  PubMed  CAS  Google Scholar 

  • Ohyanagi H, Sakata K, Komatsu S (2012) Soybean Proteome Database 2012: update on the comprehensive data repository for soybean proteomics. Front Plant Sci 3:110

    Article  PubMed  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Pissarra J, Sunkel C, Salema R (1996) Tissue-specific distribution of glutamine synthetase in potato tubers. Ann Bot 77:429–432

    Article  CAS  Google Scholar 

  • Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Article  PubMed  Google Scholar 

  • Roberts IN, Harrod G, Dickinson HG (1984) Pollen-stigma interactions in Brassica oleracea. I. Ultrastructure and physiology of the stigmatic papillar cells. J Cell Sci 66:241–253

    PubMed  CAS  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  PubMed  CAS  Google Scholar 

  • Sakurai N, Hayakawa T, Nakamura T, Yamaya T (1996) Changes in the cellular localization of cytosolic glutamine synthetase protein in vascular bundles of rice leaves at various stages of development. Planta 200:306–311

    Article  CAS  Google Scholar 

  • Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR (2009) Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21:2655–2671

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Tang W, Jamshed M, Northey J, Patel D, Smith D, Siu M, Muench DG, Wang Z-Y, Goring DR (2011) Proteomic analysis of Brassica stigmatic proteins following the self-incompatibility reaction reveals a role for microtubule dynamics during pollen responses. Mol Cellul Proteomics 10:M111.011338

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2007) Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot 58:3525–3535

    Article  PubMed  CAS  Google Scholar 

  • Shi F, Yamamoto R, Shimamura S, Hiraga S, Nakayama N, Nakamura T, Yukawa K, Hachinohe M, Matsumoto H, Komatsu S (2008) Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding. Phytochemistry 69:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Silva NF, Stone SL, Christie LN, Sulaman W, Nazarian KAP, Burnett LA, Arnoldo MA, Rothstein SJ, Goring DR (2001) Expression of the S receptor kinase in self-compatible Brassica napus cv. Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol Genet Genomics 265:552–559

    Article  PubMed  CAS  Google Scholar 

  • Suen DF, Wu SS, Chang HC, Dhugga KS, Huang AH (2003) Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. J Biol Chem 278:43672–43681

    Article  PubMed  CAS  Google Scholar 

  • Swanson R, Edlund AF, Preuss D (2004) Species specificity in pollen–pistil interactions. Annu Rev Genet 38:793–818

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J Mol Biol 42:641–651

    Article  CAS  Google Scholar 

  • Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A (2000) The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA 97:1920–1925

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2003) GABA, a new player in the plant mating game. Dev Cell 5:185–186

    Article  PubMed  CAS  Google Scholar 

  • Yang PF, Li XJ, Wang XQ, Chen H, Chen F, Shen SH (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Zafra A, Rodriguez-Garcia MI, Alche JD (2010) Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol 10:36

    Article  PubMed  Google Scholar 

  • Zinkl GM, Preuss D (2000) Dissecting Arabidopsis pollen–stigma interactions reveals novel mechanisms that confer mating specificity. Ann Bot 85:15–21

    Article  Google Scholar 

  • Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen–stigma adhesion in Arabidopsis a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 100 talents program of Chinese Academy of Sciences and National Key Technology R&D Program 2011BAD35B06. We are grateful to Dr. Bing Yi from Huazhong Agriculture University for his help in qRT-PCR analysis and Ms. Li Wang for the MALDI-TOF MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihua Sha or Pingfang Yang.

Additional information

Communicated by Scott Russell.

Ming Li and Aihua Sha contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5820 kb)

Supplementary material 2 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Sha, A., Zhou, X. et al. Comparative proteomic analyses reveal the changes of metabolic features in soybean (Glycine max) pistils upon pollination. Sex Plant Reprod 25, 281–291 (2012). https://doi.org/10.1007/s00497-012-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-012-0197-0

Keywords

Navigation