Skip to main content
Log in

A numerical tool for assessing human thermal safety and thermal comfort in cold-weather activities

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This paper describes a newly developed software tool to evaluate human thermal safety and thermal comfort in cold-weather activities aimed at guiding users to arrange activity plans and select appropriate clothing ensembles. The software inputs include conditions of activity, environment, human body, and clothing ensemble. It outputs physiological temperatures, cold injury risks, thermal sensations, and thermal comforts in intuitive ways like cloud maps and curves. The software tool is characterized by (1) integration of a thermoregulatory model that predicts human thermophysiological responses under exercise conditions in cold environments, (2) the functions of clothing ensemble database and individual parameter database, (3) the human centric outputs that directly reflect human physiological and mental status, and (4) the user-friendly operation interface and output interface, as well as a wide applicability. The software is validated with human test studies covering ambient temperatures from − 30.6 to 5 °C, clothing ensembles from 1.34 to 3.20 clo, and activity intensities from 2 to 9 Mets. The average prediction RMSEs of core temperature, mean skin temperature, thermal sensation, and thermal comfort are 0.16 °C, 0.45 °C, 0.58, and 1.41, respectively. The software is an advanced expansion to current standards and guidance of cold exposure assessment and a meaningful tool for the fields of occupational health care, cold protection, and environmental ergonomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(Adu\) :

Segment surface area (m2)

\(Bl\) :

Heat exchange: blood perfusion (W)

\({Bl}_{adj}\) :

Heat exchange: blood flow entering and leaving the local vessel (W)

\({B}_{AVA}\) :

Heat exchange: AVA blood flow (W)

\(Cap\) :

Heat capacity (Wh·℃−1)

\(c\) :

Correction coefficient for resultant water vapor resistance and thermal insulation

\(cor\) :

Correction coefficient for resultant basal metabolic rate and blood flow

\(D\) :

Heat exchange: conduction (W)

\({E}_{mec}\) :

Mechanical energy generation (W)

\({E}_{sk}\) :

Skin latent heat loss (W)

\(H\) :

Heat exchange: convection (W)

\(I\) :

Thermal insulation (℃·m2·W−1)

\({I}_{r}\) :

Resultant thermal insulation (℃·m2·W−1)

\(M\) :

Total metabolic rate (W)

\(P\) :

Water vapor pressure (Pa)

\(Q\) :

Heat production (W)

\({Q}_{b}\) :

Basal metabolic heat production (W)

\({Qs}_{sk}\) :

Skin sensible heat loss (W)

\({R}_{e}\) :

Water vapor resistance (Pa·m2·W−1)

\({R}_{e,r}\) :

Resultant water vapor resistance (Pa·m2·W−1)

RES :

Heat loss: respiration (W)

T :

Temperature (℃)

T0:

Setpoint temperature (℃)

t :

Time (h)

va :

Air speed (m·s1)

vw :

Movement speed (m·s1)

\({\eta }_{net}\) :

Net exercise efficiency

\(a\) :

Air

\(ar\) :

Artery

\(cb\) :

Central blood pool

\(cr\) :

Core

\([i]\) :

Node number or segment number

\(sk\) :

Skin

\(sve\) :

Superficial vein

\(ve\) :

Vein

References

  • Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 compendium of physical activities: A second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581

    Article  Google Scholar 

  • ASTM International (2016) ASTM F2732–16, Standard practice for determining the temperature ratings for cold weather protective clothing.

  • Böning D, Maassen N, Steinach M (2017) The efficiency of muscular exercise. Dtsch Z Sportmed 68:203–214

    Article  Google Scholar 

  • Brajkovic D, Ducharme MB (2006) Facial cold-induced vasodilation and skin temperature during exposure to cold wind. Eur J Appl Physiol 96(6):711–721

    Article  Google Scholar 

  • Brooks GA (2011) Bioenergetics of exercising humans. Compr Physiol 2(1):537–562

    Google Scholar 

  • Brown DJ, Brugger H, Boyd J et al (2012) Accidental hypothermia. N Engl J Med 367:1930–1938

    Article  CAS  Google Scholar 

  • Cappaert TA, Stone JA, Castellani JW et al (2008) National Athletic Trainers’ Association position statement: environmental cold injuries. J Athl Train 43(6):640–658

    Article  Google Scholar 

  • Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol 268:467–481

    Article  CAS  Google Scholar 

  • Chen F, Fu M, Li Y et al (2022a) Modelling and experimental study of thermo-physiological responses of human exercising in cold environments. J Therm Biol 109:103316

    Article  Google Scholar 

  • Chen F, Fu M, Shen S, et al. (2022b) Experimental study of thermo-physiological responses of exercising subjects in cold environments. J Tsinghua Univ (Sci. & Technol.). 62(6):1059–1066. (in Chinese)

  • Fanger PO (1973) Thermal Comfort-Analysis and Applications in environmental Engineering. McGraw-Hill, New York, pp 28–30

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45(3):143–159

    Article  CAS  Google Scholar 

  • Fudge J (2016) Exercise in the cold: Preventing and managing hypothermia and frostbite injury. Sports Health 8(2):133–139

    Article  Google Scholar 

  • Gallea JW, Higgens GL, Germann CA et al (2014) Injury and illness sustained by human competitors in the 2010 Iditarod sled dog race. Am J Emerg Med 32:780–784

    Article  Google Scholar 

  • Gammons M, Boynton M, Russel, l J., et al (2011) On-mountain coverage of competitive skiing and snowboarding events. Curr Sports Med Rep 10:140–146

    Article  Google Scholar 

  • Gao C, Lin LY, Halder A et al (2015) Validation of standard ASTM F2732 and comparison with ISO 11079 with respect to comfort temperature ratings for cold protective clothing. Appl Ergon 46:44–53

    Article  Google Scholar 

  • Gavhed DCE, Holmer I (1996) Physiological and subjective responses to thermal transients of exercising subjects dressed in cold-protective clothing. Eur J Appl Physiol Occup Physiol 73(6):573–581

    Article  CAS  Google Scholar 

  • Haririchi I, Arvin A, Vash JH et al (2005) Frostbite: incidence and predisposing factors in mountaineers. Br J Sports Med 39:898–901

    Article  Google Scholar 

  • Hébert-Losier K, Zinner C, Platt S et al (2017) Factors that influence the performance of elite sprint cross-country skiers. Sports Med 47(2):319–342

    Article  Google Scholar 

  • Heil K, Thomas R, Robertson G et al (2016) Freezing and non-freezing cold weather injuries: a systematic review. Br Med Bull 117(1):79–93

    Article  Google Scholar 

  • Holmér I (1984) Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE Trans 90(1B):1116–1128

    Google Scholar 

  • Imray C, Oakley E (2005) Cold still kills: cold-related illnesses inmilitary practice freezing and non-freezing cold injury. J R Army Med Corps 151(4):218–222

    Article  CAS  Google Scholar 

  • ISO (2007b) ISO 11079, Ergonomics of the thermal environment – determination and interpretation of cold stress when using required clothing insulation (IREQ) and the assessment of local cooling effects. Switzerland, Geneva

    Google Scholar 

  • ISO (2007a) ISO 9920, Ergonomics of the thermal environment - Estimation of thermal insulation and water vapour resistance of a clothing ensemble. Geneva, Switzerland.

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428

    Article  Google Scholar 

  • Keatinge WR (1960) Freezing-point of human skin. Lancet 1(7114):11–14

    Article  CAS  Google Scholar 

  • Kupper T, Steffgen J, Jansing P (2003) Cold exposure during helicopter rescue operations in the Western Alps. Ann Occup Hyg 47(1):7–16

    Google Scholar 

  • Lin Y, Jin Y, Jin H (2022) Effects of different exercise types on outdoor thermal comfort in a severe cold city. J Therm Biol 109:103330

    Article  Google Scholar 

  • Makinen TM, Hassi J (2009) Health problems in cold work. Ind Health 47(3):207–220

    Article  Google Scholar 

  • Martinez-Tellez B, Quesada-Aranda A, Sanchez-Delgado G et al (2019) Temperatus® software: a new tool to efficiently manage the massive information generated by iButtons. Int J Med Inform 126:9–18

    Article  Google Scholar 

  • Maughan RJ (2010) Distance running in hot environments: a thermal challenge to the elite runner. Scand J Med Sci Sports 20(Suppl 3):95–102

    Article  Google Scholar 

  • O'Donnell FL, Stahlman S, Oetting AA (2017) Update: Cold weather injuries, active and reserve components, U.S. Armed Forces, July 2012-June 2017. Msmr. 24(10), 12–21.

  • Oksa J (2002) Neuromuscular performance limitations in cold. Int J Circumpolar Health 61(2):154–162

    Article  Google Scholar 

  • Procter E, Brugger H, Burtscher M (2018) Accidental hypothermia in recreational activities in the mountains: A narrative review. Scand J Med Sci Sports 28(12):2464–2472

    Article  Google Scholar 

  • Rintamäki H, Rissanen S (2006) Heat strain in cold. Ind Health 44(3):427–432

    Article  Google Scholar 

  • Rintamaki H (2004) Cold stress indices. In: Stanton NA, Hedge A, Brookhuis K, Salas E and Hendrick HW (eds.) Handbook of human factors and ergonomics, London: CRC Press.

  • Sandsund M, Saursaunet V, Wiggen Ø et al (2012) Effect of ambient temperature on endurance performance while wearing cross-country skiing clothing. Eur J Appl Physiol 112(12):3939–3947

    Article  Google Scholar 

  • Siple P (1945) Measurement of Dry Atmospheric Cooling in Subfreezing Temperatures. Proceedings of American Philosophical Society, 89.

  • Sjödin A, Forslund A, Webb P et al (1996) Mild overcooling increases energy expenditure during endurance exercise. Scand J Med Sci Sports 6(1):22–25

    Article  Google Scholar 

  • Smith M, Matheson GO, Meeuwisse WH (1996) Injuries in cross-country skiing: a critical appraisal of the literature. Sports Med 21:239–250

    Article  CAS  Google Scholar 

  • Sullivan-Kwantes W, Dhillon P, Goodman L, et al. (2017) Medical encounters during a joint Canadian/U.S. exercise in the high Arctic (exercise Arctic Ram). Mil Med 182(9):e1764–e1768

  • Takahashi Y, Nomoto A, Yoda S et al (2021) Thermoregulation model JOS-3 with new open source code. Energy Build 231:110575

    Article  Google Scholar 

  • Tanabe SI, Kobayashi K, Nakano J et al (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646

    Article  Google Scholar 

  • Tanaka M, Tqchihara Y, Yamazaki S et al (1983) Thermal reaction and manual performance during cold exposure while wearing cold-protective clothing. Ergonomics 26(2):141–149

    Article  CAS  Google Scholar 

  • Vanos JK, Warland JS, Gillespie TJ et al (2010) Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol 54(4):319–334

    Article  Google Scholar 

  • Werner J, Buse M (1988) Temperature profiles with respect to inhomogeneity and geometry of the human body. J Appl Physiol 65:1110–1118

    Article  CAS  Google Scholar 

  • Xu X, Werner J (1997) A dynamic model of the human/clothing/environment-system. Appl Hum Sci 16(2):61–75

    Article  CAS  Google Scholar 

  • Xu X, Tikuisis P, Gonzalez R et al (2005) Thermoregulatory model for prediction of long-term cold exposure. Comput Biol Med 35(4):287–298

    Article  Google Scholar 

  • Xu X, Rioux TP, Gonzalez J et al (2021) A digital tool for prevention and management of cold weather injuries—Cold Weather Ensemble Decision Aid (CoWEDA). Int J Biometeorol 65(8):1415–1426

    Article  Google Scholar 

  • Yang J, Ni S, Weng W (2017) Modelling heat transfer and physiological responses of unclothed human body in hot environment by coupling CFD simulation with thermal model. Int J Therm Sci 120:437–445

    Article  Google Scholar 

  • Zhang H, Huizenga C, Arens E et al (2004) Thermal sensation and comfort in transient non-uniform thermal environments. Eur J Appl Physiol 92(6):728–733

    Article  CAS  Google Scholar 

  • Zhang H (2003) Human thermal sensation and comfort in transient and non-uniform thermal environment. Ph. D Thesis, University of California at Berkeley

  • Zhou X, Zhang H, Lian Z et al (2014) A model for predicting thermal sensation of Chinese people. Build Environ 82:237–246

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 52074163), National Key Research and Development Program of China (Grant No. 2019YFF0302101), Science Foundation for Distinguished Young Scholars of Anhui Province, China (Grant No. 1908085J22), and Anhui Research Institute of China Engineering Science and Technology Development Strategy. The authors are deeply grateful to the supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Fu or Shifei Shen.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Fu, M., Li, Y. et al. A numerical tool for assessing human thermal safety and thermal comfort in cold-weather activities. Int J Biometeorol 67, 377–388 (2023). https://doi.org/10.1007/s00484-022-02416-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02416-w

Keywords

Navigation