Skip to main content
Log in

The importance of body core temperature evaluation in balneotherapy

  • Review Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

It is not wrong to say that there are no application standards or best practices in balneotherapy considering traditional applications. There is not enough information about how changes in body temperature, duration, and frequency of exposure to heat affect therapeutic outcomes of balneotherapeutic applications. Body core temperature (BCT) is probably the best parameter for expressing the heat load of the body and can be used to describe the causal relationship between heat exposure and its effects. There are several reasons to take BCT changes into account; for example, it can be used for individualized treatment planning, defining the consequences of thermal effects, developing disease-specific approaches, avoiding adverse effects, and designing clinical trials. The reasons why BCT changes should be considered instead of conventional measures will be discussed while explaining the effects of balneotherapy in this article, along with a discussion of BCT measurement in balneotherapy practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboud T, Schuster NM (2019) Pain management in multiple sclerosis: a review of available treatment options. Curr Treat Options Neurol. https://doi.org/10.1007/s11940-019-0601-2

    Article  Google Scholar 

  • Albakova Z, Armeev GA, Kanevskiy LM et al (2020) HSP70 multi-functionality in cancer. Cells. https://doi.org/10.3390/cells9030587

    Article  Google Scholar 

  • Allison TG, Reger WE (1992) Thermoregulatory, cardiovascular, and psychophysical response to alcohol in men in 40°C water. J Appl Physiol 72:2099–2107

    CAS  Google Scholar 

  • Allison TG, Miller TD, Squires RW, Gau GT (1993) Cardiovascular responses to immersion in a hot tub in comparison with exercise in male subject with coronary artery disease. Mayo Clin Proc 68:19–25

    CAS  Google Scholar 

  • An J, Lee I, Yi Y (2019) The thermal effects of water immersion on health outcomes: an integrative review. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16071280

    Article  Google Scholar 

  • Archer AE, Schulze AT, Geiger PC (2017) Exercise, heat shock proteins and insulin resistance. Phil Trans R Soc B. https://doi.org/10.1098/rstb.2016.0529

    Article  Google Scholar 

  • Antonelli M, Donelli D, Fioravanti A (2018) Effects of balneotherapy and spa therapy on quality of life of patients with knee osteoarthritis: a systematic review and meta-analysis. Rheumatol Int 38:1807–1824

    Google Scholar 

  • Baker DG (2002) Multiple sclerosis and thermoregulatory dysfunction. J Appl Physiol 92:1779–1780

    Google Scholar 

  • Barna J, Csemely P, Vellai T (2018) Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci 75:2897–2916

    CAS  Google Scholar 

  • Barry L, Branco J, Kargbo N et al (2016) The impact of user technique on temporal artery thermometer measurements. Nurs Crit Care 11:12–14

    Google Scholar 

  • Bolton S, Latimer E, Clark D (2020) Is there sufficient evidence to support the use of temporal artery and non-contact infrared thermometers in clinical practice? A literature review. J Global Clin Eng 2:8–16

    Google Scholar 

  • Bonzi M, Fiorelli EM, Solbiati M, Montano N (2016) Accuracy of peripheral thermometers for estimating temperature (Letter to Editor). Ann Intern Med 165:73

    Google Scholar 

  • Brunt VE, Wiedenfeld- Needham K, Comrada LN, Minson CT (2018) Passive heat therapy protects against endothelial cell hypoxia-reoxygenation via effects of elevations in temperature and circulating factors. J Physiol 596(20):4831–4845

    CAS  Google Scholar 

  • Brunt VE, Minson CT (2021) Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J Appl Physiol 130:1684–1704. https://doi.org/10.1152/japplphysiol.00141.2020 (1985)

    Article  CAS  Google Scholar 

  • Campanella C, Pace A, Bavisotto CC et al (2018) Heat shock proteins in Alzheimer’s disease: role and targeting. Int J Mol Sci. https://doi.org/10.3390/ijms19092603

    Article  Google Scholar 

  • Carrettiero DC, Santiago FE, Motzko-Soares AC, Almeida MC (2015) Temperature and toxic Tau in Alzheimer’s disease: new insights. Temperature 2:491–498

    Google Scholar 

  • Chambers CD (2006) Risks of hyperthermia associated with hot tub or spa use by pregnant women. Birth Defects Res (Part A). Clin Mol Teratol 76:569–573

    CAS  Google Scholar 

  • Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612

    Google Scholar 

  • Chen X, Smith A, Plummer C, Lei W (2020) Heat shock proteins and pain. In: Asea AAA, Kaur P (eds) Heat Shock Proteins in Neuroscience. Springer, Switzerland. https://doi.org/10.1007/7515_2020_20

    Chapter  Google Scholar 

  • Cheshire WP (2016) Thermoregulatory disorders and illness related to heat and cold stress. Auton Neurosci 196:91–104

    Google Scholar 

  • Chudecka M, Lubkowska A, Kempinska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6

    Google Scholar 

  • Coombs GB, Tremblay JC (2019) Passive heat therapy for cerebral protection: new ideas of age-old concepts. J Physiol 597(2):371–372

    CAS  Google Scholar 

  • Crawford DC, Hicks B, Thompson MJ (2006) Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment. J Med Eng Technol 30:199–211

    CAS  Google Scholar 

  • Cui S, Sun B, Sun X (2020) A method for improving temperature measurement accuracy on an infrared thermometer for the ambient temperature field. Rev Sci Instrum. https://doi.org/10.1063/1.5121214

    Article  Google Scholar 

  • Daanen HA (2006) Infrared tympanic temperature and ear canal morphology. J Med Eng Technol 30:224–234

    CAS  Google Scholar 

  • Davis SL, Wilson TE, White AT, Frohman EM (2010) Thermoregulation in multiple sclerosis. J Appl Physiol 109:1531–1537

    Google Scholar 

  • Dell’Isola GB, Cosentini E, Canale L et al (2021) Noncontact body temperature measurement: uncertainty evaluation and screening decision rule to prevent the spread of COVID-19. Sensors. https://doi.org/10.3390/s21020346

    Article  Google Scholar 

  • Deshpande AD, Haris-Habes M, Schootman M (2008) Epidemiology of diabetes and diabetes-related complications. Phys Ther 88:1254–1264

    Google Scholar 

  • Duong HT, Shahrukh Hashmi S, Ramadhani T et al (2011) Maternal use of hot tub and major structural birth defects. Birth Defects Res (Part A). Clin Mol Teratol 91:836–841

    CAS  Google Scholar 

  • Echchgadda I, Roth CC, Cerna CZ, Wilmink GJ (2013) Temporal gene expression kinetics for human keratinocytes exposed to hyperthermic stress. Cells 2:224–243

    CAS  Google Scholar 

  • European Union (2007) Directive 2007/51/EC of the European Parliament and of the Council of 25 September 2007 Amending Council Directive 76/769/EEC Relating to Restrictions on the Marketing of Certain Measuring Devices Containing Mercury. https://eur-lex.europa.eu

  • Fallis WM, Hamelin K, Wang X, Symonds J (2006) A multimethod approach to evaluate chemical dot thermometers for oral temperature measurement. J Nurs Meas 14:151–162

    Google Scholar 

  • Farnell S, Maxwell L, Tan S et al (2005) Temperature measurement: comparison of non-invasive methods used in adult critical care. J Clin Nurs 14:632–639

    Google Scholar 

  • Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M (2011) Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int 31:1–8

    Google Scholar 

  • Forestier R, Erol Forestier FB, Francon A (2017a) Spa therapy and knee osteoarthritis: a systematic review. Ann Phys Rehabil Med 59:216–226

    Google Scholar 

  • Forestier R, Erol-Forestier FB, Francon A (2017b) Current role for spa therapy in rheumatology. Joint Bone Spine 84:9–13

    Google Scholar 

  • Fulbrook P (1997) Core body temperature measurement: a comparison of axilla, tympanic membrane and pulmonary artery blood temperature. Intensive Crit Care Nurs 13:266–267

    CAS  Google Scholar 

  • Galvez I, Torres-Piles S, Ortega-Rincon E (2018) Balneotherapy, immune system, and stress response: a hormetic strategy? Int J Mol Sci. https://doi.org/10.3390/ijms19061687

    Article  Google Scholar 

  • Garcia-Avila M, Islas LD (2019) What is new about mild temperature sensing? A review of recent findings. Temperature 6:132–141

    Google Scholar 

  • Geijer H, Udumyan R, Lohse G, Nilsagard Y (2016) Temperature measurements with a temporal scanner: systematic review and meta-analysis. BMJ. https://doi.org/10.1136/bmjopen-2015-009509

    Article  Google Scholar 

  • Gibson TM, Redman PJ, Belyavin AJ (1981) Prediction of oesophageal temperatures from core temperatures measured at other sites in man. Clin Phys Physiol Meas 2:247–256

    CAS  Google Scholar 

  • Gutenbrunner C, Bender T, Cantista P, Karagülle Z (2010) A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Int J Biometeorol 54:495–507

    Google Scholar 

  • Haghighi MM, Wright CY, Ayer J et al (2021) Impacts of high environmental temperatures on congenital anomalies: a systematic review. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph18094910

    Article  Google Scholar 

  • Hoekstra SP, Bishop NC, Faulkner SH et al (2018) Acute and chronic effects of hot water immersion on inflammation and metabolism in sedentary, overweight adults. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00407.2018

    Article  Google Scholar 

  • Holowatz LA, Kenney WL (2010) Peripheral mechanism of thermoregulatory control of skin blood flow in aged humans. J Appl Physiol 109:1538–1544

    Google Scholar 

  • Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L (2014) The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 19:447–464

    CAS  Google Scholar 

  • Huggins R, Glaviano N, Negishi N et al (2012) Comparison of rectal and aural core body temperature thermometry in hyperthermic, exercising individuals: a meta-analysis. J Athl Train 47:329–338

    Google Scholar 

  • Inia JA, O’Brien ER (2021) Role of heat shock protein 27 in modulating atherosclerotic inflammation. J Cardiovasc Transl Res 14:3–12

    Google Scholar 

  • Jefferies S, Weatherall M, Young P, Beasley R (2011) A systematic review of the accuracy of peripheral thermometry in estimating core temperatures among febrile critically ill patients. Crit Care Resusc 13:194–199

    Google Scholar 

  • Jensen BN, Jensen FS, Madsen SN, Lossl K (2000) Accuracy of digital tympanic, oral, axillary, and rectal thermometers compared with standard rectal mercury thermometers. Eur J Surg 166:848–851

    CAS  Google Scholar 

  • John AR, Alhmidi H, Cadnum JL et al (2018) Evaluation of the potential for electronic thermometers to contribute to spread of healthcare-associated pathogens. Am J Infect Control 46:708–710

    Google Scholar 

  • Kasioumi P, Vrazeli P, Vezyraki P et al (2019) Hsp70 (HSP70A1A) downregulation enhances the metastatic ability of cancer cells. Int J Oncol 54:821–832

    CAS  Google Scholar 

  • Kenney WL, Munce TA (2003) Aging and human temperature regulation. J Appl Physiol 95:2598–2603

    Google Scholar 

  • Kenny GP, Yardley J, Brown C, Sigal RJ, Jay O (2010) Heat stress in older individuals and patients with common chronic diseases. CMAJ 182:1053–1060

    Google Scholar 

  • Kenny GP, Sigal RJ, McGinn R (2016) Body Temperature Regulation in Diabetes. Temperature 3:119–145

    Google Scholar 

  • Kiekkas P, Stefanopoulos N, Bakalis N et al (2016) Agreement of infrared temporal artery thermometry with other thermometry methods in adults: systematic review. J Clin Nurs 25:894–905

    Google Scholar 

  • Koska J, Ronensky J, Zimanova T, Vigas M (2003) Growth hormone and prolactin responses during partial and whole body warm-water immersions. Acta Physiol Scand 17:19–23

    Google Scholar 

  • Krause M, Heck TG, Bittencourt A et al (2015) The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm. https://doi.org/10.1155/2015/249205

    Article  Google Scholar 

  • Lang BJ, Guerrero-Gimenez ME, Prince TL (2019) Heat shock proteins are essential components in transformation and tumor progression: cancer cell intrinsic pathways and beyond. Int J Mol Sci. https://doi.org/10.3390/ijms20184507

    Article  Google Scholar 

  • Latorre-Roman PA, Rentero-Blanco M, Laredo-Aguilera JA, García-Pinillos F (2015) Effect of a 12-day balneotherapy programme on pain, mood, sleep, and depression in healthy elderly people. Psychogeriatrics 15:14–19

    Google Scholar 

  • Leavitt VM, De Meo E, Riccitelli G et al (2015) Elevated body temperature is linked to fatigue in an Italian sample of relapsing–remitting multiple sclerosis patients. J Neurol 262:2440–2442

    CAS  Google Scholar 

  • Levander MS, Grodzinsky E (2012) Accuracy when assessing and evaluating body temperature in clinical practice: time for a change? Thermology Int 22(3 Appendix):25–32

    Google Scholar 

  • Leyk D, Hoitz J, Becker C, Glitz KJ, Nestler K, Piekarski C (2019) Health risks and interventions in exertional heat stress. Dtsch Arztebl Int 116:537–44. https://doi.org/10.3238/arztebl.2019.0537

    Article  Google Scholar 

  • Machin G, Brettle D, Fleming S et al (2021) (2021) Is current body temperature measurement practice fit-for-purpose? J Med Eng Technol. https://doi.org/10.1080/03091902.2021.1873441

    Article  Google Scholar 

  • Malhotra AS, Goren H (1981) The hot bath test in the diagnosis of multiple sclerosis. JAMA 246:1113–1114

    CAS  Google Scholar 

  • Marino FE (2009) Heat reactions in multiple sclerosis: an overlooked paradigm in the study of comparative fatigue. Int J Hyperthermia 25:34–40

    Google Scholar 

  • Marui S, Misawa A, Tanaka Y, Nagashima K (2017) Assessment of axillary temperature for the evaluation of normal body temperature of healthy young adults at rest in a thermoneutral environment. J Physiol Anthropol. https://doi.org/10.1186/s40101-017-0133-y

    Article  Google Scholar 

  • Matsumoto S (2018) Evaluation of the role of balneotherapy in rehabilitation medicine. J Nippon Med Sch 85:196–203

    CAS  Google Scholar 

  • Mazerolle SM, Ganio MS, Casa DJ et al (2011) Is oral temperature an accurate measurement of deep body temperature? A systematic review. J Athl Train 46:566–573

    Google Scholar 

  • McGorm H, Roberts LA, Coombes JS, Peake JM (2018) Turning up the heat: an evaluation of the evidence for heating to promote exercise recovery, muscle rehabilitation and adaptation. Sports Med 48:1311–1328

    Google Scholar 

  • Miwa C, Shimasaki H, Mizutani M et al (2020) Effect of aging on thermoregulatory and subjective responses during a 15-minute bath at 41°C. J Hum Environ Syst 23:45–53

    Google Scholar 

  • Moran DS, Mendal L (2002) Core temperature measurement Methods and Current Insights. Sports Med 32:879–885

    Google Scholar 

  • Morer C, Roques CF, Françon A, Forestier R, Maraver F (2017) The role of mineral elements and other chemical compounds used in balneology: data from double-blind randomized clinical trials. Int J Biometeorol 61:2159–2173

    Google Scholar 

  • Nakada H, Horie S, Kawanami S et al (2017) Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal. Int J Biometeorol 61:1545–1554

    Google Scholar 

  • Ono J, Hashiguchi N, Sawatari H et al (2017) Effect of water bath temperature on physiological parameters and subjective sensation in older people. Geriatr Gerontol Int 17:2164–2170

    Google Scholar 

  • Opara JA, Brola W, Wylegala AA, Wylegala E (2016) Uhthoff’s phenomenon 125 years later-what do we know today? J Med Life 9:101–105

    CAS  Google Scholar 

  • Ortega E, Galvez I, Hinchado MD et al (2017) Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: regulation of the altered inflammatory and stress feedback response. Int J Biometeorol 61:1777–1785

    CAS  Google Scholar 

  • Petrofsky J, Gunda S, Raju C et al (2010) Impact of hydrotherapy on skin blood flow:how much is due to moisture and how much is due to heat? Physiother Theory Pract 26:107–112

    Google Scholar 

  • Petrofsky J, Alshahmmari F, Yim JE et al (2011) The interrealtionship between locally applied heat, ageing and skin blood flow on heat transfer into and from the skin. J Med Eng Technol 35:262–274

    Google Scholar 

  • Petrofsky J, Berk L, Al-Nakhli H (2012) The influence of autonomic dysfunction associated with aging and type 2 diabetes on daily life activities. Exp Diabetes Res. https://doi.org/10.1155/2012/657103

    Article  Google Scholar 

  • Petrofsky J, Alshammari F, Bains GS et al (2013) What is more damaging to vascular endothelial function: diabetes, age, high BMI, or all of the above? Med Sci Monit 19:257–263

    Google Scholar 

  • Plecash AR, Leavitt BR (2014) Aquatherapy for neurodegenerative disorders. J Huntingtons Dis 3:5–11

    Google Scholar 

  • Purssell E, While A, Coomber B (2009) Tympanic thermometry-normal temperature and reliability. Paediatr Nurs. https://doi.org/10.7748/paed2009.07.21.6.40.c7151

    Article  Google Scholar 

  • Renero-C FJ (2018) The abrupt temperature changes in the plantar skin thermogram of the diabetic patient: looking in to prevent the insidious ulcers. Diabet Foot Ankle. https://doi.org/10.1080/2000625X.2018.1430950

    Article  Google Scholar 

  • Ring EF, McEvoy H, Jung A, Zuber J, Machin G (2010) New standards for devices used for the measurement of human body temperature. J Med Eng Technol 34:249–253

    CAS  Google Scholar 

  • Ryan-Wenger NA, Sims MA, Patton RA, Williamson J (2018) Selection of the Most Accurate Thermometer Devices for Clinical Practice: Part 1: Meta-Analysis of the Accuracy of Non-Core Thermometer Devices Compared to Core Body Temperature. Pediatr Nurs 44:116–133

    Google Scholar 

  • Shaw J, Marston C (2000) Polarized infrared emissivity for a rough water surface. Opt Express 7:375–380

    CAS  Google Scholar 

  • Sims MA, Patton RA, Williamson J, Ryan-Wenger NA (2018) Selection of the Most Accurate Thermometer Devices for Clinical Practice: Part 2: Nursing Practice and Policy Change in the Use of Non-Core Thermometer Devices. Pediatr Nurs 44:134–154

    Google Scholar 

  • Singh IS, Hasday JD (2013) Fever, hyperthermia and the heat shock response. Int J Hyperthermia 29:423–435

    CAS  Google Scholar 

  • Soltero DJ, Sommers EE, Truelove EL (1984) Permeability of the thermometer sheath when taking oral temperatures. Infect Control 5:435–437

    CAS  Google Scholar 

  • Smitz S, Winckel A, Smitz MF (2009) Reliability of infrared ear thermometry in the prediction of rectal temperature in older inpatients. J Clin Nurs 18:451–456

    Google Scholar 

  • Song YJ, Zhong CB, Wang XB (2019) Heat shock protein 70: a promising therapeutic target for myocardial ischemia-reperfusion injury. J Cell Physiol 234:1190–1207

    CAS  Google Scholar 

  • Sugawara J, Tomoto T (2021) Acute effects of short-term warm water immersion on arterial stiffness and central hemodynamics. Front Physiol. https://doi.org/10.3389/fphys.2021.620201

    Article  Google Scholar 

  • Sullivan SJ, Seay N, Zhu L et al (2021) Performance characterization of non-contact infrared thermometers (NCITs) for forehead temperature measurement. Med Eng Phys 93:93–99

    Google Scholar 

  • Vaidyanathan A, Malilay J, Schramm P, Saha S (2020) Heat-related deaths - United States, 2004–2018. MMVR Morb Mortal Wkly Rep 69:729–734. https://doi.org/10.15585/mmwr.mm6924a1

    Article  Google Scholar 

  • Vroman NB, Buskirk ER, Hodgson JL (1983) Cardiac output and skin blood flow in lean and obese individuals during exercise in the heat. J Appl Physiol Respir Environ Exerc Physiol 55:69–74

    CAS  Google Scholar 

  • Yeoh WK, Lee JKW, Lim HY et al (2017) Re-visiting the tympanic membrane vicinity as core body temperature measurement site. PLoS ONE. https://doi.org/10.1371/journal.pone.0174120

    Article  Google Scholar 

  • Zehner WJ, Terndrup TE (1991) The impact of moderate ambient temperature variance on the relationship between oral, rectal, and tympanic membrane temperatures. Clin Pediatr. https://doi.org/10.1177/000992289103000419

    Article  Google Scholar 

  • Zhang X, Noda S, Himeno R, Liu H (2016) Cardiovascular disease-induced thermal responses during passive heat stress: an integrated computational study. Int J Numer Method Biomed Eng. https://doi.org/10.1002/cnm.2768

    Article  Google Scholar 

  • Zininga T, Ramatsui L, Shonhai A (2018) Heat shock proteins as immunomodulants. Molecules. https://doi.org/10.3390/molecules23112846

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Odabasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odabasi, E., Turan, M. The importance of body core temperature evaluation in balneotherapy. Int J Biometeorol 66, 25–33 (2022). https://doi.org/10.1007/s00484-021-02201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-021-02201-1

Keywords

Navigation