Skip to main content
Log in

Forecasting ragweed pollen characteristics with nonparametric regression methods over the most polluted areas in Europe

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Nonparametric time-varying regression methods were developed to forecast daily ragweed pollen concentration, and the probability of the exceedance of a given concentration threshold 1 day ahead. Five-day and 10-day predictions of the start and end of the pollen season were also addressed with a nonparametric regression technique combining regression analysis with the method of temperature sum. Our methods were applied to three of the most polluted regions in Europe, namely Lyon (Rhône Valley, France), Legnano (Po River Plain, Italy) and Szeged (Great Plain, Hungary). For a 1-day prediction of both the daily pollen concentration and daily threshold exceedance, the order of these cities from the smallest to largest prediction errors was Legnano, Lyon, Szeged and Legnano, Szeged, Lyon, respectively. The most important predictor for each location was the pollen concentration of previous days. The second main predictor was precipitation for Lyon, and temperature for Legnano and Szeged. Wind speed should be considered for daily concentration at Legnano, and for daily pollen threshold exceedances at Lyon and Szeged. Prediction capabilities compared to the annual cycles for the start and end of the pollen season decreased from west to east. The order of the cities from the lowest to largest errors for the end of the pollen season was Lyon, Legnano, Szeged for both the 5- and 10-day predictions, while for the start of the pollen season the order was Legnano, Lyon, Szeged for 5-day predictions, and Legnano, Szeged, Lyon for 10-day predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aznarte JL, Sánchez JMB, Lugilde DN, Fernández CDL, de la Guardia CD, Sánchez FA (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32(4):1218–1225

    Article  Google Scholar 

  • Banken R, Comtois P (1992) Concentration of ragweed pollen and prevalence of allergic rhinitis in 2 municipalities in the Laurentides. Allerg Immunol 24:91–94

    CAS  Google Scholar 

  • Bartkova-Scevkova J (2003) The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia). Int J Biometeorol 48(1):1–5

    Article  CAS  Google Scholar 

  • Béres I, Novák R, Hoffmanné Pathy Zs, Kazinczi G (2005) Spreading, morphology, biology, importance of mugwort leaves ragweed and possibilities of protection. [Az ürömlevelű parlagfű (Ambrosia artemisiifolia L.) elterjedése, morfológiája, biológiája, jelentősége és a védekezés lehetőségei.]. Gyomnövények, Gyomirtás 6(1):1–48, in Hungarian

    Google Scholar 

  • Bottero P, Venegoni E, Riccio G, Vignati G, Brivio M, Novi C, Ortolani C (1990) Pollinosi da Ambrosia artemisiifolia in Provincia di Milano. Folia Allergol Immunol Clin 37(2):99–105

    Google Scholar 

  • Cai Z (2007) Trending time-varying coefficient time series models with serially correlated errors. J Econometrics 136:163–188

    Article  Google Scholar 

  • Cassagne E (2009) Revue bibliographique des principaux seuils de détermination et méthodes de prévision de la date de début de pollinisation (DDP). Rev Fr Allergol 49(8):571–576

    Article  Google Scholar 

  • Castellano-Méndez M, Aira MJ, Iglesias I, Jato V, González-Manteiga W (2005) Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. Int J Biometeorol 49(5):310–316

    Article  Google Scholar 

  • Chrenová J, Mičieta K, Ščevková J (2009) Monitoring of Ambrosia pollen concentration in the atmosphere of Bratislava (Slovakia) during years 2002–2007. Aerobiologia 26:83–88. doi:10.1007/s10453-009-9145-3

    Google Scholar 

  • D’Amato G, Cecchi L (2008) Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy 38(8):1264–1274

    Article  Google Scholar 

  • D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62(9):976–990

    Article  Google Scholar 

  • Dechamp C, Rimet ML, Meon L, Deviller P (1997) Parameters of ragweed pollination in the Lyon's area (France) from 14 years of pollen counts. Aerobiologia 13:275–279

    Article  Google Scholar 

  • Fan J (1992) Design-adaptive nonparametric regression. J Am Stat Assoc 87:998–1004

    Article  Google Scholar 

  • Frei T, Gassner E (2008) Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol 52(7):667–674

    Article  Google Scholar 

  • Galán C, Cariňanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45(2):59–63

    Article  Google Scholar 

  • García-Mozo H, Galán C, Belmonte J, Bermejo D, Candau P, de la Guardia CD, Elvira B, Gutierrez M, Jato V, Silva I, Trigo MM, Valencia R, Chuine I (2009) Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric For Meteorol 149(2):256–262

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Ianovici N, Sîrbu C (2007) Analysis of airborne ragweed (Ambrosia artemisiifolia L.) pollen in Timişoara, 2004. An Univ Oradea Fascicula Biol 14:101–108

    Google Scholar 

  • Jäger S (1998) Global aspect of ragweed in Europe. In: Spieksma FThM (ed) Satellite Symposium Proceedings: Ragweed in Europe. Proceedings of the 6th International Congress on Aerobiology. Alk-Abelló, Perugia (Italy), pp 6–10

    Google Scholar 

  • Juhász M (1998) History of ragweed in Europe. In: Spieksma FThM (ed) Ragweed in Europe. Satellite Symposium Proceedings of the 6th International Congress on Aerobiology. Alk-Abelló, Perugia (Italy), pp 11–14

    Google Scholar 

  • Kasprzyk I (2008) Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland); evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol 52(5):341–351

    Article  Google Scholar 

  • Köppen W (1931) Grundriss Der Klimakunde. De Gruyter, Berlin

    Google Scholar 

  • Laaidi M (1997) Influence des facteurs météorologiques sur la concentration du pollen dans l’air. Climat Santé 17:7–25

    Google Scholar 

  • Laaidi M (2001) Regional variations in the pollen season of Betula in Burgundy: two models for predicting the start of the pollination. Aerobiologia 17(3):247–254

    Article  Google Scholar 

  • Laaidi M, Thibaudon M, Besancenot JP (2003) Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). Int J Biometeorol 48:65–73

    Article  Google Scholar 

  • Lejoly-Gabriel HL (1978) Recherches écologiques sur la pluie pollinique en Belgique. Acta Geogr Lovan 13:1–278

    Google Scholar 

  • Li Q, Racine J (2004) Cross-validated local linear nonparametric regression. Stat Sinica 14:485–512

    Google Scholar 

  • Makra L, Juhász M, Borsos E, Béczi R (2004) Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int J Biometeorol 49(1):37–47

    Article  CAS  Google Scholar 

  • Makra L, Juhász M, Béczi R, Borsos E (2005) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44(1):57–64

    Article  Google Scholar 

  • Makra L, Sz T, Bálint B, Sümeghy Z, Sánta T, Hirsch T (2008) Influences of meteorological parameters and biological and chemical air pollutants to the incidence of asthma and rhinitis. Climate Res 37(1):99–119

    Article  Google Scholar 

  • Mandrioli P, Di Cecco M, Andina G (1998) Ragweed pollen: The aeroallergen is spreading in Italy. Aerobiologia 14:13–20

    Article  Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana 20:179–182

    Article  Google Scholar 

  • Ocana-Peinado F, Valderrama MJ, Aguilera AM (2008) A dynamic regression model for air pollen concentration. Stoch Environ Res Risk A 22:S59–S63

    Article  Google Scholar 

  • Peternel R, Čulig J, Hrga I, Hercog P (2006) Airborne ragweed (Ambrosia artemisiifolia L.) pollen concentrations in Croatia, 2002–2004. Aerobiologia 22(3):161–168

    Article  Google Scholar 

  • Puc M (2006) Ragweed and mugwort pollen in Szczecin, Poland. Aerobiologia 22(1):67–78

    Article  Google Scholar 

  • Ribeiro H, Cunha M, Abreu I (2008) Quantitative forecasting of olive yield in Northern Portugal using a bioclimatic model. Aerobiologia 24(3):141–150

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Jato V, Aira MJ (2005) Relationship between meteorology and Castanea airborne pollen. Belg J Bot 138(2):129–140

    Google Scholar 

  • Rodríguez-Rajo FJ, Valencia-Barrera RM, Vega-Maray AM, Suarez FJ, Fernandez-Gonzalez D, Jato V (2006) Prediction of airborne Alnus pollen concentration by using Arima models. Ann Agric Environ Med 13(1):25–32

    Google Scholar 

  • Rodríguez-Rajo FJ, Grewling L, Stach A, Smith M (2009) Factors involved in the phenological mechanism of Alnus flowering in Central Europe. Ann Agric Environ Med 16(2):277–284

    Google Scholar 

  • Rodríguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodriguez MV, Mejuto JC (2010) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23(3):419–425

    Article  Google Scholar 

  • Ruml M, Vukovič A, Milatovič D (2009) Evaluation of different methods for determining growing degree-day threshold in apricot cultivars. Int J Biometeorol 54:411–422. doi:10.1007/s00484-009-0292-06

    Google Scholar 

  • Sánchez Mesa JA, Galán C, Hervás C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Int J Biometeorol 49(6):355–362

    Article  Google Scholar 

  • Šikoparija B, Smith M, Skjøth CA, Radišič P, Milkovska S, Šimič S, Brandt J (2009) The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol 53(3):263–272

    Article  Google Scholar 

  • Snyder RI, Spano D, Cesaraccio C, Duce P (1999) Determining degree-day thresholds from field observations. Int J Biometeorol 42:177–182

    Article  Google Scholar 

  • Stach A, Smith M, Baena JCP, Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62(3):323–332

    Google Scholar 

  • Štefanič E, Kovačevič V, Lazanin Ž (2005) Airborne ragweed pollen concentration in north-eastern Croatia and its relationship with meteorological parameters. Ann Agric Environ Med 12:75–79

    Google Scholar 

  • Stepalska D, Myszkowska D, Wolek J, Piotrowicz K, Obtulowicz K (2008) The influence of meteorological factors on Ambrosia pollen loads in Cracow, Poland, 1995–2006. Grana 47(4):297–304

    Article  Google Scholar 

  • Teran L, Haselbarth-Lopez MMM, Quiroz-Garcia DL (2009) Allergy, pollen and the environment. Gac Méd Méx 145(3):215–222

    Google Scholar 

  • Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, Behrendt H (2003) Impact of pollen on human health: More than allergen carriers? Int Arch Allergy Imm 131:1–13

    Article  Google Scholar 

  • Turos OI, Kovtunenko IN, Markevych YP, Drannik GN, DuBuske LM (2009) Aeroallergen monitoring in Ukraine reveals the presence of a significant ragweed pollen season. J Allergy Clin Immun 123(2):S95-S95, Suppl. S358

    Google Scholar 

  • Verma KS, Pathak AK (2009) A comparative analysis of forecasting methods for aerobiological studies. Asian J Exp Sci 23:193–198

    Google Scholar 

  • Wan SQ, Yuan T, Bowdish S, Wallace L, Russell SD, Luo YQ (2002) Response of an allergenic species Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: Implications for public health. Am J Bot 89(11):1843–1846

    Article  Google Scholar 

  • Wopfner N, Gadermaier G, Egger M, Asero R, Ebner C, Jahn-Schmid B, Ferreira F (2005) The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Imm 138:337–346

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gilles Oliver for his part in collecting the pollen data for Lyon, Miklós Juhász for providing pollen data of Szeged, and Zoltán Sümeghy for the digital mapping in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Makra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makra, L., Matyasovszky, I., Thibaudon, M. et al. Forecasting ragweed pollen characteristics with nonparametric regression methods over the most polluted areas in Europe. Int J Biometeorol 55, 361–371 (2011). https://doi.org/10.1007/s00484-010-0346-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-010-0346-9

Keywords

Navigation