Skip to main content
Log in

Spatial modeling of drought events using max-stable processes

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

With their severe environmental and socioeconomic impact, drought events belong to the most far-reaching natural disasters. Effects are tremendous in rain-fed agricultural areas as in Africa. We analyzed and modeled the spatio-temporal statistical behavior of the Normalized Difference Vegetation Index as a risk indicator for drought, reflecting its stochastic effects on vegetation. The study used a data set for Rwanda obtained from multitemporal satellite remote sensor measurements during a 14-year period and divided into season-specific spatial random fields. Maximal deviations from average conditions were modeled with max-stable Brown–Resnick processes taking methodological and computational challenges into account. Those challenges are caused by the large spatial extent and the relatively short time span covered by the data. Extensive simulations enabled us to go beyond the observations and, thus, to estimate several important characteristics of extreme drought events, such as their expected return period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bajgiran PR, Darvishsefat AA, Khalili A, Makhdoum MF (2008) Using AVHRR-based vegetation indices for drought monitoring in the northwest of Iran. J Arid Environ 72(6):1086–1096

    Article  Google Scholar 

  • Bevilacqua M, Gaetan C, Mateu J, Porcu E (2012) Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach. J Am Stat Assoc 107(497):268–280

    Article  CAS  Google Scholar 

  • Blanchet J, Davison AC (2011) Spatial modeling of extreme snow depth. Ann Appl Stat 5(3):1699–1725

    Article  Google Scholar 

  • Brown BM, Resnick SI (1977) Extreme values of independent stochastic processes. J Appl Probab 14(4):732–739

    Article  Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics. Modeling spatial uncertainty, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Coles SG (1993) Regional modelling of extreme storms via max-stable processes. J R Stat Soc Ser B 55(4):797–816

    Google Scholar 

  • Coles SG, Tawn JA (1996) Modelling extremes of the areal rainfall process. J R Stat Soc Ser B 58(2):329–347

    Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  • Davenport M, Nicholson S (1993) On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. Int J Remote Sens 14(12):2369–2389

    Article  Google Scholar 

  • Davison AC, Padoan SA, Ribatet M (2012) Statistical modeling of spatial extremes. Stat Sci 27(2):161–186. doi:10.1214/11-STS376

    Article  Google Scholar 

  • de Haan L (1984) A spectral representation for max-stable processes. Ann Probab 12(4):1194–1204

    Article  Google Scholar 

  • Dieker AB, Mikosch T (2015) Exact simulation of Brown–Resnick random fields at a finite number of locations. Extremes 18(2):301–314

    Article  Google Scholar 

  • Dombry C, Engelke S, Oesting M (2016) Exact simulation of max-stable processes. Biometrika 103(2):303–317

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdor D (2007) The shuttle radar topography mission. Rev Geophys 45(2):RG2004

    Article  Google Scholar 

  • Fawcett L, Walshaw D (2016) Sea-surge and wind speed extremes: optimal estimation strategies for planners and engineers. Stoch Environ Res Risk Assess 30(2):463–480

    Article  Google Scholar 

  • Feng J, Yan D, Li C, Gao Y, Liu J (2014) Regional frequency analysis of extreme precipitation after drought events in the Heihe River Basin, northwest China. J Hydrol Eng 19(6):1101–1112

    Article  Google Scholar 

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114(1):168–182

    Article  Google Scholar 

  • Gaume J, Eckert N, Chambon G, Naaim M, Bel L (2013) Mapping extreme snowfalls in the French Alps using max-stable processes. Water Resour Res 49(2):1079–1098

    Article  Google Scholar 

  • Genton MG, Ma Y, Sang H (2011) On the likelihood function of Gaussian max-stable processes. Biometrika 98(2):481–488

    Article  Google Scholar 

  • Gumma MK, Thenkabail PS, Maunahan A, Islam S, Nelson A (2014) Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010. ISPRS J Photogramm Remote Sens 91:98–113

    Article  Google Scholar 

  • Gumma MK, Mohanty S, Nelson A, Arnel R, Mohammed IA, Das SR (2015) Remote sensing based change analysis of rice environments in Odisha, India. J Environ Manag 148:31–41

    Article  Google Scholar 

  • Hong X, Guo S, Zhou Y, Xiong L (2015) Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. Stoch Environ Res Risk Assess 29(4):1235–1247

    Article  Google Scholar 

  • Jahanbaksh Asl S, Khorshiddoust AM, Dinpashoh Y, Sarafrouzeh F (2013) Frequency analysis of climate extreme events in Zanjan, Iran. Stoch Environ Res Risk Assess 27(7):1637–1650

    Article  Google Scholar 

  • Kabluchko Z (2011) Extremes of independent Gaussian processes. Extremes 14(3):285–310

    Article  Google Scholar 

  • Kabluchko Z, Schlather M, de Haan L (2009) Stationary max-stable fields associated to negative definite functions. Ann Probab 37(5):2042–2065

    Article  Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(812):1287–1304

    Article  Google Scholar 

  • Kogan FN (1987) Vegetation index for areal analysis of crop conditions. In: Proceedings of the 18th conference on agricultural and forest meteorology, AMS W. Lafayette, pp 103–106

  • Kogan FN (1990) Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int J Remote Sens 11(8):1405–1419

    Article  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer series in statistics. Springer, Berlin

    Book  Google Scholar 

  • Lin ML, Chu CM, Tsai BW (2011) Drought risk assessment in western Inner-Mongolia. Int J Environ Res 5(1):139–148

    Google Scholar 

  • Marcon G, Padoan SA, Naveau P, Muliere P (2014) Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials. arXiv: 1405.5228

  • Millard SP (2013) EnvStats: an R package for environmental statistics. Springer, New York

    Book  Google Scholar 

  • Naveau P, Guillou A, Cooley D, Diebolt J (2009) Modelling pairwise dependence of maxima in space. Biometrika 96(1):1–17

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, Berlin

    Google Scholar 

  • Nicholson SE (1996) A review of climate dynamics and climate variability in eastern Africa. The Limnology, Climatology and Paleoclimatology of the East African Lakes, Gordon and Breach, Amsterdam

    Google Scholar 

  • Oesting M, Kabluchko Z, Schlather M (2012) Simulation of Brown–Resnick processes. Extremes 15:89–107

    Article  Google Scholar 

  • Oesting M, Ribatet M, Dombry C (2016a) Simulation of max-stable processes. In: Dey DK, Yan J (eds) Extreme value modeling and risk analysis. Chapman and Hall/CRC, Boca Raton, pp 195–214

    Google Scholar 

  • Oesting M, Schlather M, Friederichs P (2016b) Statistical post-processing of forecasts for extremes using bivariate brown–resnick processes with an application to wind gusts. Extremes. doi:10.1007/s10687-016-0277-x

    Google Scholar 

  • Opitz T (2013) Extremal t processes: elliptical domain of attraction and a spectral representation. J Multivar Anal 122:409–413

    Article  Google Scholar 

  • Opitz T (2016) Modeling asymptotically independent spatial extremes based on Laplace random fields. Spat Stat 16:1–18

    Article  Google Scholar 

  • Padoan SA, Ribatet M, Sisson SA (2010) Likelihood-based inference for max-stable processes. J Am Stat Assoc 105(489):263–277

    Article  CAS  Google Scholar 

  • Peters AJ, Walter-Shea EA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogramm Eng Rem Sens 68(1):71–75

    Google Scholar 

  • Resnick SI (2008) Extreme values, regular variation and point processes. Springer, New York

    Google Scholar 

  • Ribatet M (2013) Spatial extremes: max-stable processes at work. J Soc Fr Stat 154(2):156–177

    Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS symposium, NASA SP-351, vol I. NASA, Washington, DC, pp 309–317

  • Rulinda CM, Bijker W, Stein A (2010) Image mining for drought monitoring in eastern Africa using Meteosat SEVIRI data. Int J Appl Earth Obs Geoinf 12:S63–S68

    Article  Google Scholar 

  • Rulinda CM, Dilo A, Bijker W, Stein A (2012) Characterising and quantifying vegetative drought in east Africa using fuzzy modelling and NDVI data. J Arid Environ 78:169–178

    Article  Google Scholar 

  • Rulinda CM, Stein A, Turdukulov UD (2013) Visualizing and quantifying the movement of vegetative drought using remote-sensing data and GIS. Int J Geogr Inf Sci 27(8):1481–1496

    Article  Google Scholar 

  • Savo V, De Zuliani E, Salvati L, Perini L, Caneva G (2012) Long-term changes in precipitation and temperature patterns and their possible impacts on vegetation (Tolfa-Cerite area, central Italy). Appl Ecol Env Res 10(3):243–266

    Article  Google Scholar 

  • Schlather M (2002) Models for stationary max-stable random fields. Extremes 5(1):33–44

    Article  Google Scholar 

  • Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156

    Article  Google Scholar 

  • Silva AT, Naghettini M, Portela MM (2016) On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates. Stoch Env Res Risk Assess 30(1):207–224

    Article  Google Scholar 

  • Smith RL (1990) Max–stable processes and spatial extremes. Unpublished manuscript

  • Solano R, Didan K, Jacobson A, Huete A (2010) MODIS vegetation index user’s guide (MOD13 series). The University of Arizona, Tucson

    Google Scholar 

  • Song X, Saito G, Kodama M, Sawada H (2004) Early detection system of drought in east Asia using NDVI from NOAA/AVHRR data. Int J Remote Sens 25(16):3105–3111

    Article  Google Scholar 

  • Thibaud E, Mutzner R, Davison AC (2013) Threshold modeling of extreme spatial rainfall. Water Resour Res 49(8):4633–4644

    Article  Google Scholar 

  • Thibaud E, Aalto J, Cooley DS, Davison AC, Heikkinen J (2016) Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures. Ann Appl Stat 10(4):2303–2324

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Wadsworth JL, Tawn JA (2012) Dependence modelling for spatial extremes. Biometrika 99(2):253–272

    Article  Google Scholar 

  • Wadsworth JL, Tawn JA, Jonathan P (2010) Accounting for choice of measurement scale in extreme value modeling. Ann Appl Stat 4(3):1558–1578

    Article  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Wi S, Valdés JB, Steinschneider S, Kim TW (2016) Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima. Stoch Env Res Risk Assess 30(2):583–606

    Article  Google Scholar 

  • Zhang Q, Xiao M, Singh VP, Chen X (2013) Copula-based risk evaluation of hydrological droughts in the East River basin, China. Stoch Env Res Risk Assess 27(6):1397–1406

    Article  Google Scholar 

Download references

Acknowledgements

This work was mainly undertaken while M. Oesting was at ITC, University of Twente, The Netherlands. The authors are grateful to Professor Michael L. Stein and two anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Oesting.

Appendix: Bivariate density of Brown–Resnick processes

Appendix: Bivariate density of Brown–Resnick processes

Analogously to Genton et al. (2011), the bivariate density \(f_{\zeta (x_1;S),\zeta (x_2;S)}(\cdot ,\cdot ; \vartheta _\gamma (S))\) for the random vector \((\zeta (x_1;S),\zeta (x_2;S))\), \(x_1,x_2 \in {\mathscr {X}}\), is given by

$$\begin{aligned}&f_{\zeta (x_1;S), \zeta (x_2;S)}(z_1,z_2; \vartheta _\gamma (S)) \nonumber \\&\quad = \exp \left[ - \sum _{k=1}^2 \frac{1}{z_k} {\varPhi }\left( \frac{\sqrt{\gamma (x_1-x_2; \vartheta _\gamma (S))}}{2} + (-1)^k \frac{\log (z_1) - \log (z_2)}{\sqrt{\gamma (x_1-x_2; \vartheta _\gamma (S))}}\right) \right] \nonumber \\&\qquad \cdot \left[ \prod _{k=1}^2 \frac{1}{z_k^2}{\varPhi }\left( \frac{\sqrt{\gamma (x_1-x_2; \vartheta _\gamma (S))}}{2} + (-1)^k \frac{\log (z_1) - \log (z_2)}{\sqrt{\gamma (x_1-x_2; \vartheta _\gamma (S))}}\right) \right] \nonumber \\&\qquad \cdot \frac{\exp \left( -\frac{1}{8} \gamma (x_1-x_2; \vartheta _\gamma (S))\right) }{z_1^{3/2} z_2^{3/2} \sqrt{\gamma (x_1-x_2; \vartheta _\gamma (S))}} \cdot \exp \left( -\frac{(\log (z_1)-\log (z_2))^2}{4\gamma (x_1-x_2; \vartheta _\gamma (S))}\right) , \quad z_1,z_2>0, \end{aligned}$$
(30)

where \({\varPhi }\) and \(\varphi\) denote the cumulative distribution function and the probability density function of the standard normal distribution, respectively. In order to calculate the bivariate density \(f_{Z(x_1;S),Z(x_2;S)}(\cdot ; \theta (S))\) for the vector of temporal maxima \((Z(x_1;S),Z(x_2;S))\) of transformed NDVI values, we apply the density transformation formula to (30) and obtain

$$\begin{aligned}&f_{Z(x_1;S),Z(x_2;S)}(z_1,z_2; \vartheta (S)) \nonumber \\&\quad = \left[ \prod _{k=1}^2 \frac{1}{\sigma (x_k;S)} \left( 1+\xi (S)\frac{z_k - \mu (x_k;S)}{\sigma (x_k;S)}\right) ^{1/\xi (S)-1}\right] \nonumber \\&\qquad \cdot f_{\zeta (x_1;S),\zeta (x_2;S)}\left( \left( \left( 1 + \xi (S) \frac{z_k - \mu (x_k;S)}{\sigma (x_k;S)}\right) ^{\frac{1}{\xi (S)}}\right) _{k=1,2}; \vartheta _\gamma (S)\right) \end{aligned}$$
(31)

where \(\vartheta (S) = (\vartheta _{GEV}(S), \vartheta _{\gamma }(S))^\top\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oesting, M., Stein, A. Spatial modeling of drought events using max-stable processes. Stoch Environ Res Risk Assess 32, 63–81 (2018). https://doi.org/10.1007/s00477-017-1406-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1406-z

Keywords

Navigation