Skip to main content
Log in

A simple design concept for elimination of the impact of humidity on radon measurements using electrostatic collection

  • Short Communication
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The detection efficiency of electrostatic collection radon monitors is influenced by the humidity of the air in the collection cell. This is due to the recombination of positively charged 218Po with OH ions, whose concentration depends on humidity. A novel design of an electrostatic collection cell, in which the air pressure in the cell is less than the atmospheric pressure, is proposed to eliminate the impact of humidity. As a result of the lower air pressure, the drift velocity of the positively charged 218Po in the electric field increases, so the collection time decreases. A model predicting the collection efficiency of positively charged 218Po in this kind of electrostatic collection cell is presented. Based on the model, if the air pressure in the cell is sufficiently low, the collection efficiency will be approximately a constant and the dependency of the collection efficiency of the positively charged 218Po upon the water vapor concentration can be ignored. This approach can be applied to develop a new radon monitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Blackburn R, Al-Masri MS (1993) Determination of radon-222 and radium-226 in water samples by Cerenkov counting. Analyst 118:873–876

    Article  CAS  Google Scholar 

  • Chu KD, Hopke PK (1988) Neutralization kinetics for polonium-218. Environ Sci Technol 22(6):711–717

    Article  CAS  Google Scholar 

  • Dankelmann V, Reineking A, Porstendörfer J (2001) Determination of neutralisation rates of 218Po in air. Radiat Prot Dosimetry 94(4):353–357

    Article  CAS  Google Scholar 

  • Dimova N, Burnett WC, Lane-Smith D (2009) Improved automated analysis of radon (222Rn) and thoron (220Rn) in natural waters. Environ Sci Technol 43(22):8599–8603

    Article  CAS  Google Scholar 

  • Goldstein SD, Hopke PK (1985) Environmental neutralization of polonium-218. Environ Sci Technol 19(2):146–150

    Article  CAS  Google Scholar 

  • Hosoda M, Ishikawa T, Sorimachi A, Tokonami S, Uchida S (2011) Development and application of a continuous measurement system for radon exhalation rate. Rev Sci Instrum 82(1):015101

    Article  Google Scholar 

  • Jalili-Majareshin A, Behtash A, Rezaei-Ochbelagh D (2012) Radon concentration in hot springs of the touristic city of Sarein and methods to reduce radon in water. Radiat Phys Chem 81(7):749–757

    Article  CAS  Google Scholar 

  • Kearfott KJ (1989) Preliminary experiences with Rn-222 in Arizona homes. Health Phys 56(2):169–179

    Article  CAS  Google Scholar 

  • Martín-Martín A, Gutiérrez-Villanueva JL, Muñoz JM, García-Talavera M, Adamiec G, Íñiguez MP (2006) Radon measurements with a PIN photodiode. Appl Radiat Isot 64:1287–1290

    Article  Google Scholar 

  • Mitsuda C, Kajita T, Miyano K, Moriyama S, Nakahata M, Takeuchi Y, Tasaka S (2003) Development of super-high sensitivity radon detector for the Super-Kamiokande detector. Nucl Instrum Methods Phys Res Sect A 497:414–428

    Article  CAS  Google Scholar 

  • Neves PNB, Conde CAN, Tavora LMN (2007) A new experimental technique for positive ion drift velocity measurements in noble gases: results for xenon ions in xenon. Nuclear Instrum Methods Phys Res A 580:66–69

    Article  CAS  Google Scholar 

  • Pagelkopf P, Orfer JP (2003) Neutralisation rate and the fraction of the positive 218Po-clusters in air. Atmos Environ 37:1057–1064

    Article  CAS  Google Scholar 

  • Pugliese M, Baiano G, Boiano A, D’Onofrio A, Roca V, Sabbarese C, Vollaro P (2000) A compact multiparameter acquisition system for radon concentration studies. Appl Radiat Isot 53:365–370

    Article  CAS  Google Scholar 

  • Roca V, Felice PD, Esposito AM, Pugliese M, Sabbarese C, Vaupotich J (2004) The influence of environmental parameters in electrostatic cell radon monitor response. Appl Radiat Isot 61:243–247

    Article  CAS  Google Scholar 

  • Ruckerbauer F, Winkler R (2001) Radon concentration in soil gas: a comparison of methods. Appl Radiat Isot 55(2):273–280

    Article  CAS  Google Scholar 

  • SARAD. http://sarad.de/products.php?lang=en_US&catID=2&p_ID=

  • Schubert M, Paschke A, Bednorz D, Bürkin W, Stieglitz T (2012) Kinetics of the water/air phase rransition of radon and its implication on detection of radon-in-water concentrations: practical assessment of different on-site radon extraction methods. Environ Sci Technol 46(16):8945–8951

    Article  CAS  Google Scholar 

  • Swakoń J, Kozak K, Paszkowski M, Gradziński R, Łoskiewicz J, Mazur J, Janik M, Bogacz J, Horwacik T, Olko P (2004) Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area. J Environ Radioact 78(2):137–149

    Article  Google Scholar 

  • Takeuchi Y, Okumura K, Kajita T, Tasaka S, Hori H, Nemoto M, Okazawa H (1999) Development of high sensitivity radon detectors. Nucl Instrum Methods Phys Res Sect A 421:334–341

    Article  CAS  Google Scholar 

  • Tan Y, Xiao D (2011a) Revision for measuring the radon exhalation rate from the medium surface. IEEE Trans Nucl Sci 58(1):209–213

    Article  CAS  Google Scholar 

  • Tan Y, Xiao D (2011b) A novel algorithm for quick and continuous tracing the change of radon concentration in environment. Rev Sci Instrum 82(4):043503

    Article  Google Scholar 

  • Tan Y, Xiao D (2013) A novel method to measure the radon exhalation rate in only one measurement cycle. Anal Methods 5:805–808

    Article  CAS  Google Scholar 

  • Tan Y, Xiao D, Shan J, Zhou Q, Yuan H, Feng B (2014) A theoretical approach to the study of saturation phenomena of electrostatic collection efficiency of 218Po. Radiat Phys Chem 100:70–73

    Article  CAS  Google Scholar 

  • Tan Y, Kudo-Yokota H, Pornnumpa C, Wanabongse P (2015a) Improving the quality of the “ventilation chamber” technique for surveying the radon exhalation rate continuously. Stoch Env Res Risk Assess. doi:10.1007/s00477-014-1011-3

    Google Scholar 

  • Tan Y, Xiao D, Tang Q, Shan J, Zhou Q, Feng B (2015b) Research on the perturbation phenomenon while tracing the radon concentration in real time. Stoch Env Res Risk Assess 29:755–760

    Article  Google Scholar 

  • Vogiannis E, Nikolopoulos D (2008) Modelling of radon concentration peaks in thermal spas: application to Polichnitos and Eftalou spas (Lesvos Island-Greece). Sci Total Environ 405:36–44

    Article  CAS  Google Scholar 

  • Wang JX, Andersen TC, Simpson JJ (1999) An electrostatic radon detector designed for water radioactivity measurements. Nuclear Instrum Methods Phys Res A 421:601–609

    Article  CAS  Google Scholar 

  • Yang M (2011) A current global view of environmental and occupational cancers. J Environ Sci Health Part C 29(3):223–249

    Article  CAS  Google Scholar 

  • Yener G, Küçüktaş E (1998) Concentrations of radon and decay products in various underground mines in western Turkey and total effective dose equivalents. Analyst 123:31–34

    Article  CAS  Google Scholar 

  • Young HD, Freedman RA (2008) University physics, 12th edn. Pearson Addison-Wesley, San Francisco, P622–P624

  • Yu KN, Wong BTY, Law JYP, Lau BMF, Nikezic D (2001) Indoor dose conversion coefficients for radon progeny for different ambient environments. Environ Sci Technol 35(11):2136–2140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant 11075049, 11375058), the Excellent Talents Program of Hengyang Normal University of China, Cooperative Innovation Center for Digitalization of Cultural Heritage in Ancient Villages and Towns and the Construct Program of the Key Discipline in Hunan province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanliang Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Xiao, D., Zhou, Q. et al. A simple design concept for elimination of the impact of humidity on radon measurements using electrostatic collection. Stoch Environ Res Risk Assess 30, 2303–2308 (2016). https://doi.org/10.1007/s00477-015-1148-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1148-8

Keywords

Navigation