Skip to main content

Advertisement

Log in

Design of optimal ecosystem monitoring networks: hotspot detection and biodiversity patterns

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 06 May 2017

Abstract

Effective monitoring of ecosystems is crucial for assessing and possibly anticipating shifts, quantifying ecosystem services, and optimal decision making based on shifts and services. The selection of monitoring sites is typically suboptimal following local stakeholder or research interests that do not allow to capture ecosystem patterns and dynamics as a whole. The design of optimal monitoring network is crucial for the accurate determination of biodiversity patterns of ecosystems. A novel model for the design of optimal monitoring networks for biodiversity based on the concept of the value of information (VoI) is proposed. The VoI is assigned to species richness that is the economically and ecologically valuable metric. As a case study the trinational frontier ecosystem among Brazil, Peru, and Bolivia is considered for the model. A multiresolution texture-based model estimates species richness and turnover on satellite imagery calibrated on different sets of information coming from forest plot data organized in network topologies. The optimal monitoring network is the network that minimizes the integrated VoI defined as the variation of the VoI in the 28 years considered. This is equivalent to minimize the sum of the species turnover of the ecosystem. The small world network is identified as the optimal and most resilient monitoring network whose nodes are the hotspots of species richness. The hotspots are identified as the sites whose VoI is the highest for the whole period considered. Hence, the hotspots are the most valuable communities for inferring biodiversity patterns and the most ecologically/economically valuable according to the richness—resilience hypothesis. Most hotspots are honored by the small world network that can be thought as the ”backbone” ecological network of the ecosystem. The small world monitoring network has an accuracy ~50 % higher than other network topologies in predicting biodiversity patterns. This network has the highest VoI at any time step and scale considered; thus, it guarantees to track changes of ecosystems in space and time. The network that results from the optimal trade-off between data value with their uncertainty and relevance, has deep implications for understanding ecosystem function and for management decisions. The model allows to include preferences for ecosystem communities by using differential weights on the VoI of these communities, and economic constraints that limit the extension of the network. Because of the optimal integration of environmental, social, and economical factors the model allows a sustainable monitoring and planning of biodiversity for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abida R, Bocquet M, Vercauteren N, Isnard O (2008) Design of a monitoring network over france in case of a radiological accidental release. Atmos Environ 42(21):5205–5219. doi:10.1016/j.atmosenv.2008.02.065

    Article  CAS  Google Scholar 

  • Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97. doi:10.1103/RevModPhys.74.47

    Article  Google Scholar 

  • Albert R, Jeong H, Barabasi A-L (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382. doi:10.1038/35019019. ISSN 1476–4687

  • Aldecoa R, Marín I (2013) Surprise maximization reveals the community structure of complex networks. Sci Rep. doi:10.1038/srep01060

  • Alessa LN, Kliskey AA, Brown G (2008) Social-ecological hotspots mapping: a spatial approach for identifying coupled social-ecological space. Landsc Urban Plan 85:27–39. doi:10.1016/j.landurbplan.2007.09.007. ISSN 01692046

  • Alfonso L, Price R (2012) Coupling hydrodynamic models and value of information for designing stage monitoring networks. Water Resour Res 48(8):W08530. doi:10.1029/2012WR012040

    Article  Google Scholar 

  • Arinaminpathy N, Kapadia S (2012) Size and complexity in model financial systems. Proc Natl Acad Sci USA 109(45):18338–18343. doi:10.1073/pnas.1213767109

    Article  CAS  Google Scholar 

  • Banavar JR, Colaiori F, Flammini A, Maritan A, Rinaldo A (2001) Scaling, optimality, and landscape evolution. J Stat Phys 104:1–48. doi:10.1023/A:1010397325029. ISSN 0022–4715

  • Beale N, Rand DG, Battey H, Croxson K, May RM, Nowak MA (2011) Individual versus systemic risk and the regulator’s dilemma. Proc Natl Acad Sci USA 108(31):12647–12652. doi:10.1073/pnas.1105882108. http://www.pnas.org/content/108/31/12647.abstract

  • Bekessy SA, Wintle BA, Lindenmayer DB, Mccarthy MA, Burgman MA, Possingham HP (2010) The biodiversity bank cannot be a lending bank. Conserv Lett 3(3):151–158. doi:10.1111/j.1755-263X.2010.00110.x

    Article  Google Scholar 

  • Bhattacharjya D, Eidsvik J, Mukerji T (2010) The value of information in spatial decision making. Math Geosci 42(2):141–163. doi:10.1007/s11004-009-9256-y. ISSN 1874–8961

  • Boakes EH, McGowan PJK, Fuller RA, Chang-qing D, Clark NE, O’Connor K, Mace GM (2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol 8(6):e1000385. doi:10.1371/journal.pbio.1000385

  • Borisova T, Shortle J, Horan RD, Abler D (2005) Value of information for water quality management. Water Resour Res. doi:10.1029/2004WR003576. ISSN 1944–7973

  • Caers J (2011) Value of information. Wiley, New York, pp 193–213. doi:10.1002/9781119995920.ch11. ISBN 9781119995920

  • Cohen R, Havlin S (2003) Scale-free networks are ultrasmall. Phys Rev Lett 90:058701. doi:10.1103/PhysRevLett.90.058701

  • Colizza V, Banavar JR, Maritan A, Rinaldo A (2004) Network structures from selection principles. Phys Rev Lett 92:198701. doi:10.1103/PhysRevLett.92.198701

  • Convertino M, Baker KM, Vogel JT, Lu C, Suedel B, Linkov I (2013) Multi-criteria decision analysis to select metrics for design and monitoring of sustainable ecosystem restorations. Ecol Indicat 26:76–86. doi:10.1016/j.ecolind.2012.10.005

    Article  Google Scholar 

  • Convertino M, Mangoubi RS, Linkov I, Lowry NC, Desai M (2012a) Inferring species richness and turnover by statistical multiresolution texture analysis of satellite imagery. PLoS One 7(10):10. doi:10.1371/journal.pone.0046616

  • Convertino M, Welle P, Munoz-Carpena R, Kiker GA, Chu-Agor ML, Fischer RA, Linkov I (2012b) Epistemic uncertainty in predicting shorebird biogeography affected by sea-level rise. Ecol Model 240:1–15. doi:10.1016/j.ecolmodel.2012.04.012. ISSN 0304–3800

  • Cordeiro NJ, Howe HF (2003) Forest fragmentation severs mutualism between seed dispersers and an endemic african tree. Proc Natl Acad Sci USA 100(24):14052–14056. doi:10.1073/pnas.2331023100

    Article  CAS  Google Scholar 

  • Costello C, Rassweiler A, Siegel D, de Leo G, Micheli F, Rosenberg A (2010) Marine reserves special feature: the value of spatial information in MPA network design. Proc Natl Acad Sci USA 107:18294–18299. doi:10.1073/pnas.0908057107

    Article  CAS  Google Scholar 

  • Dasgupta P, Kinzig A (2011) The value of biodiversity. Technical report, University of Cambridge, Cambridge. http://www.econ.cam.ac.uk/faculty/dasgupta/pubs11/Dasgupta-Kinzig-Perrings-EOB.pdf

  • Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The amazon basin in transition. Nature 481(7381):321–328. doi:10.1038/nature10717. ISSN 0028–0836

  • Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D (1998) The statistical inevitability of stability-diversity relationships in community ecology. Am Nat 151(3):264–276

    CAS  Google Scholar 

  • Emmert-Streib F, Dehmer M (2012) Exploring statistical and population aspects of network complexity. PLoS One 7(5):e34523. doi:10.1371/journal.pone.0034523

    Article  CAS  Google Scholar 

  • Farnsworth KD, Lyashevska O, Fung T (2012) Functional complexity: the source of value in biodiversity. Ecol Complex 11:46–52. doi:10.1016/j.ecocom.2012.02.001. ISSN 1476–945X

  • Feeley KJ, Silman MR (2009) Extinction risks of amazonian plant species. Proc Natl Acad Sci USA 106 (30):12382–12387. doi:10.1073/pnas.0900698106. http://www.pnas.org/content/106/30/12382.abstract

  • Friedman A, Yakubu A (2012) Host demographic allee effect, fatal disease, and migration: persistence or extinction. SIAM J Appl Math 72(5):1644–1666. doi:10.1137/120861382

    Article  Google Scholar 

  • Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci USA 107 (43):18286–18293. doi:10.1073/pnas.0906473107. http://www.pnas.org/content/107/43/18286.abstract

  • Haldane AG, May RM (2011) Systemic risk in banking ecosystems. Nature 469:351–355. doi:10.1038/nature09659

    Article  CAS  Google Scholar 

  • Halpern BS, Longo C, Hardy D, McLeod KL, Samhouri JF, Katona SK, Kleisner K, Lester SE, O/’Leary J, Ranelletti M, Rosenberg AA, Scarborough C, Selig ER, Best BD, Brumbaugh DR, Stuart Chapin F, Crowder LB, Daly KL, Doney SC, Elfes C, Fogarty MJ, Gaines SD, Jacobsen KI, Karrer LB, Leslie HM, Neeley E, Pauly D, Polasky S, Ris B, St Martin K, Stone GS, Sumaila UR, Zeller D (2012) An index to assess the health and benefits of the global ocean. Nature 488:615–620. doi:10.1038/nature11397

  • Haynes-Young R, Potschin M (2009) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli D, Frid C (eds) BES ecological reviews series, vol 6. Cambridge University, Cambridge

  • Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3(4):e0002051. doi:10.1371/journal.pone.0002051

  • Janssen MA, Bodin Ö, Anderies JM, Elmqvist T, Ernstson H, Mcallister RRJ, Olsson P, Ryan P (2006) Toward a network perspective of the study of resilience in social-ecological systems. Ecol Soc 11(1):15

    Article  Google Scholar 

  • Kefi S, Rietkerk M, Roy M, Franc A, de Ruiter PC, Pascual M (2011) Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol Lett, 14(1):29–35. doi:10.1111/j.1461-0248.2010.01553.x. ISSN 1461–0248

  • Keisler J (2004) Value of information in portfolio decision analysis. Decis Anal 1(3):177–189. doi:10.1287/deca.1040.0023. http://da.journal.informs.org/content/1/3/177.abstract

  • Kim IY, de Weck OL (2005) Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct Multidiscip Optim 29:149–158. doi:10.1007/s00158-004-0465-1

  • Kujala H, Burgman MA, Moilanen A (2012) Treatment of uncertainty in conservation under climate change. Conserv Lett doi:10.1111/j.1755-263X.2012.00299.x. ISSN 1755–263X

  • Laurance WF, Luizao RCC (2007) Driving a wedge into the amazon. Nature 448(7152):409–410. doi:10.1038/448409a. ISSN 0028–0836

  • Li L, Wang J, Cao Z, Zhong E (2008) An information-fusion method to identify pattern of spatial heterogeneity for improving the accuracy of estimation. Stoch Environ Res Risk Assess 22:689–704. doi:10.1007/s00477-007-0179-1

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the amazon. Science 319(5860):169–172. doi:10.1126/science.1146961. ISSN 1095–9203

  • Mumby PJ, Elliott IA, Eakin CM, Skirving W, Paris CB, Edwards HJ, Enriquez S, Iglesias-Prieto R, Cherubin LM, Stevens JR (2011) Reserve design for uncertain responses of coral reefs to climate change. Ecol Lett 14(2):132–140. doi:10.1111/j.1461-0248.2010.01562.x. ISSN 1461–0248

  • Muneepeerakul R, Rinaldo A, Levin SA, Rodriguez-Iturbe I (2008) Signatures of vegetational functional diversity in river basins. Water Resour Res. doi:10.1029/2007WR006153. ISSN 1944–7973

  • May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256. doi:10.1137/S003614450342480

  • Nonaka E, Petter H (2007) Agent-based model approach to optimal foraging in heterogeneous landscapes: effects of patch clumpiness. Ecography 30(6):777–788. doi:10.1111/j.2007.0906-7590.05148.x. ISSN 0906–7590

  • Oakley JE (2009) Decision-theoretic sensitivity analysis for complex computer models. Technometrics 51(2):121–129. doi:10.1198/TECH.2009.0014

  • Pandit A, Crittenden JC (2012) Index of network resilience (inr) for urban water distribution systems. http://www.tisp.org/index.cfm?cdid=12519&pid=10261

  • Park J, Seager TP, Rao PSC, Convertino M, Linkov I (2012) Integrating risk and resilience approaches to catastrophe management in engineering systems. Risk Anal. doi:10.1111/j.1539-6924.2012.01885.x. ISSN 1539–6924

  • Perz SG, Cabrera L, Carvalho LA, Castillo J, Chacacanta R, Cossio RE, Solano YF, Hoelle J, Perales LM, Puerta I, Cspedes DR, Camacho IR, Silva AC (2012a) Regional integration and local change: road paving, community connectivity, and socialecological resilience in a tri-national frontier, southwestern amazonia. Reg Environ Change 12:35–53. doi:10.1007/s10113-011-0233-x. ISSN 1436–3798

  • Perz SG, Shenkin A, Barnes G, Cabrera L, Carvalho LA, Castillo J (2012b) Connectivity and resilience: a multidimensional analysis of infrastructure impacts in the southwestern amazon. Soc Indicat Res 106:259–285. doi:10.1007/s11205-011-9802-0

  • Peterson G, Allen CE, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1(1):6–18. doi:10.1007/s100219900002. ISSN 1432–9840

  • Pinto PC, Thiran P, Vetterli M (2012) Locating the source of diffusion in large-scale networks. Phys Rev Lett 109:068702. doi:10.1103/PhysRevLett.109.068702

  • Rassweiler A, Costello C (2012) Marine protected areas and the value of spatially optimized fishery management. Proc Natl Acad Sci USA 109(29):11884–11889. doi:10.1073/pnas.1116193109

    Article  CAS  Google Scholar 

  • Reinmoeller P, van Baardwijk N (2005) The link between diversity and resilience. Technical report, MIT Sloan Review. www.forestplots.net.

  • Rocco CM, Ramirez-Marquez JE, Salazar DE, Hernandez I (2010) Implementation of multi-objective optimization for vulnerability analysis of complex networks. Proc Inst Mech Eng O 224(2):87–95. doi:10.1243/1748006XJRR274. http://pio.sagepub.com/content/224/2/87.abstract

  • Rodriguez-Iturbe I, Muneepeerakul R, Bertuzzo E, Levin SA, Rinaldo A (2009) River networks as ecological corridors: a complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. Water Resour Res. doi:10.1029/2008WR007124. ISSN 1944–7973

  • Saatchi S, Asefi-Najafabady S, Malhi Y, Aragao LE, Anderson LO, Myneni RB, Nemani R (2013) Persistent effects of a severe drought on amazonian forest canopy. Proc Natl Acad Sci USA 110(2):565–570. doi:10.1073/pnas.1204651110

    Article  CAS  Google Scholar 

  • Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J, (2012) Anticipating critical transitions. Science 338(6105):344–348. doi:10.1126/science.1225244

  • Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees. PLoS Biol 4(11):e344. doi:10.1371/journal.pbio.0040344

    Article  Google Scholar 

  • Sinha S (2005) Complexity vs. stability in small-world networks. Phys A 346:147–153. doi:10.1016/j.physa.2004.08.062

    Article  Google Scholar 

  • Soares-Filho B, Moutinho P, Nepstad D, Anderson A, Rodrigues H, Garcia R, Dietzsch L, Merry F, Bowman M, Hissa L, Silvestrini R, Maretti C (2010) Role of brazilian amazon protected areas in climate change mitigation. Proc Natl Acad Sci USA 107(24):10821–10826

    Article  CAS  Google Scholar 

  • Southworth J, Marsik M, Qiu Y, Perz S, Cumming G, Stevens F, Rocha K, Duchelle A, Barnes G (2011) Roads as drivers of change: trajectories across the trinational frontier in map—the southwestern amazon. Rem Sens 3(5):1047–1066. doi:10.3390/rs3051047

    Article  Google Scholar 

  • Steege HT, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino J-F, Prévost M-F, Spichiger R, Castellanos H, von Hildebrand P, Vásquez R (2006) Continental-scale patterns of canopy tree composition and function across amazonia. Nature 443(7110):444–447, 2006. doi:10.1038/nature05134. ISSN 0028–0836

  • Suzuki S, Caers J (2008) A distance-based prior model parameterization for constraining solutions of spatial inverse problems. Math Geosc 40:445–469. doi:10.1007/s11004-008-9154-8

  • Taylor K, Brummer T, Taper ML, Wing A, Rew LJ (2012) Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Divers Distrib 18(9): 942–951. doi:10.1111/j.1472-4642.2012.00926.x. ISSN 1472–4642

  • Trainor-Guitton WJ, Mukerji T, Knight R (2012) A methodology for quantifying the value of spatial information for dynamic earth problems. Stoch Environ Res Risk Assess 27(4):969–983. doi:10.1007/s00477-012-0619-4. ISSN 1436–3240

  • von Winterfeldt D, Kavet R, Peck S, Mohan M, Hazen G (2012) The value of environmental information without control of subsequent decisions. Risk Anal 32(12):2113–2132. doi:10.1111/j.1539-6924.2012.01828.x. ISSN 1539–6924

  • Walker B, Carpenter S, Anderies J, Abel N, Cumming G, Janssen M, Lebel L, Norberg J, Peterson GD, Pritchard R (2002) Resilience management in social-ecological systems: a working hypothesis for a participatory approach. Conserv Ecol 6(1):14

    Article  Google Scholar 

  • Wang J-F, A. Stein A, Gao B-B, Ge Y (2012) A review of spatial sampling. Spat Stat 2:1–14. doi:10.1016/j.spasta.2012.08.001. ISSN 2211–6753

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442. doi:10.1038/30918

    Article  CAS  Google Scholar 

  • Wilhite A (2001) Bilateral trade and ‘small-world’ networks. Comput Econ 18(1):49–64. doi:10.1023/A:1013814511151. ISSN 0927–7099

  • Wilmers CC (2008) Understanding ecosystem robustness. Trends Ecol Evol 22(10):504–506. doi:10.1016/j.tree.2007.08.008. ISSN 0169–5347

  • Wintle BA, Runge MC, Bekessy SA (2010) Allocating monitoring effort in the face of unknown unknowns. Ecol Lett 13(11):1325–1337. doi:10.1111/j.1461-0248.2010.01514.x. ISSN 1461–0248

  • Wintle BA, Bekessy SA, Keith DA, van Wilgen BW, Cabeza M, Schröder B, Carvalho SB, Falcucci A, Maiorano L, Regan TJ, Rondinini C, Boitani L, Possingham HP (2011) Ecological-economic optimization of biodiversity conservation under climate change. Nat Clim Change 1:355–359. doi:10.1038/nclimate1227

    Article  Google Scholar 

  • Xu J, Fischbeck P, Small M, VanBriesen J, Casman E (2008) Identifying sets of key nodes for placing sensors in dynamic water distribution networks. J Water Resour Plan Manag 134(4):378–385. doi:10.1061/(ASCE)0733-9496(2008)134:4(378)

  • Yeh M-S, Lin Y-P, Chang L-C (2006) Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environ Geol 50:101–121. doi:10.1007/s00254-006-0190-8

    Article  CAS  Google Scholar 

  • Yesson C, Brewer PW, Sutton T, Caithness N, Pahwa JS, Burgess M, Gray WA, White RJ, Jones AC, Bisby FA, Culham A (2007) How global is the global biodiversity information facility? PLoS One 2(11):11. doi:10.1371/journal.pone.0001124

    Article  Google Scholar 

  • Ziv G, Baran E, Nam S, Rodrguez-Iturbe I (2012) Trading-off fish biodiversity, food security, and hydropower in the mekong river basin. Proc Natl Acad Sci USA 109(15):5609–5614. doi:10.1073/pnas.1201423109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from NSF CNH: Global Sensitivity and Uncertainty Analysis in the Evaluation of Social-Ecological Resilience: Theoretical Debates Over Infrastructure Impacts on Livelihoods and Forest Change (Award number 1114924). M.C. acknowledges funding form the Minnesota Discovery, Research and InnoVation Economy (MnDRIVE) initiative at the University of Minnesota. The Multiresolution Texture Analysis Model has been submitted for patenting as ''Detecting Species Diversity by Image Texture Analysis'' (Convertino M., and Mangoubi R.) with the support of the Charles Stark Draper Laboratory, Inc., Cambridge (MA), and the approval of the University of Florida Research Foundation.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Convertino.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00477-017-1422-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1459 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Convertino, M., Muñoz-Carpena, R., Kiker, G.A. et al. Design of optimal ecosystem monitoring networks: hotspot detection and biodiversity patterns. Stoch Environ Res Risk Assess 29, 1085–1101 (2015). https://doi.org/10.1007/s00477-014-0999-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0999-8

Keywords

Navigation