Skip to main content

Advertisement

Log in

Simulation of snowmelt runoff in ungauged basins based on MODIS: a case study in the Lhasa River basin

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

It is theoretically and practically significant to conduct snowmelt runoff simulations and hydrological research for high-elevation regions. The Lhasa River basin, an ungauged basin, is a typical alpine headwater region where snowmelt runoff contributes significantly to its stream flow. In this study, the snowmelt period, defined by the snow cover curves obtained at different altitudinal zones based on Moderate-Resolution Imaging Spectroradiometer (MODIS) and Digital Elevation Model data, occurred from March 6 to July 12 in the basin. The snowmelt processes were simulated with the Snowmelt Runoff Model (SRM) in 2002 and 2003 for calibration and validation, respectively. The coefficients of determination (R 2) were 0.86 and 0.87 for calibration and validation, respectively, and the Nash–Sutcliffe coefficients were both 0.80, which indicate reasonable performances in simulating hydrological processes in the Lhasa River basin. The simulated snowmelt at altitudes below 5,000 m accounts for most of the snowmelt. And the simulated snowmelt runoff contributed 3–6 % to the total runoff. The sensitivity of individual parameters was analysed and ranked as follows: α and γ > C S  > C R  > T crit . In short, the SRM based on MODIS remotely sensed data performed well for the ungauged Lhasa River basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andreadis KM, Lettenmaier DP (2006) Assimilating remotely sensed snow observations into a macroscale hydrological model. Adv Water Resour 29:872–886. doi:10.1016/j.advwatres.2005.08.004

    Article  Google Scholar 

  • Archer DR, Fowler HJ (2008) Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J Hydrol 361(1–2):10–23. doi:10.1016/j.jhydrol.2008.07.017

    Article  Google Scholar 

  • Chen H, Xiang TT, Zhou X, Xu CY (2012) Impacts of climate change on the Qingjiang Watershed’s runoff change trend in China. Stoch Environ Res Risk Assess 26(6):847–858. doi:10.1007/s00477-011-0524-2

    Article  Google Scholar 

  • Clark MP et al (2006) Assimilation of snow covered area information into hydrologic and land-surface models. Adv Water Resour 29(8):1209–1221. doi:10.1016/j.advwatres.2005.10.001

    Article  Google Scholar 

  • David CG, Danny M (2005) Spatially distributed energy balance snowmelt modeling in a mountainous river basin: estimation of meteorological inputs and verification of model results. J Hydrol 315(1–4):126–153. doi:10.1016/j.jhydrol.2005.03.026

    Google Scholar 

  • Dincer T, Payne BR, Florkows T, Martinec J, Tongiorg E (1970) Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour Res 6(1):110–124. doi:10.1029/WR006i001p00110

    Article  Google Scholar 

  • Dou Y, Chen X, Bao AM, Li LH (2011) The simulation of snowmelt runoff in the ungauged Kaidu River Basin of TianShan Mountains, China. Environ Earth Sci 62(5):1039–1045. doi:10.1007/s12665-010-0592-5

    Article  Google Scholar 

  • Ferguson RI (1999) Snowmelt Runoff Models. Prog Phys Geogr 23(2):205–227. doi:10.1177/030913339902300203

    Article  Google Scholar 

  • Gelfan A (2010) Extreme snowmelt floods: frequency assessment and analysis of genesis on the basis of the dynamic-stochastic approach. J Hydrol 388(1–2):85–99. doi:10.1016/j.jhydrol.2010.04.031

    Article  Google Scholar 

  • Johnson MS et al (2003) Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR. J Hydrol 284(1–4):57–76. doi:10.1016/j.jhydrol.2003.07.005

    Article  Google Scholar 

  • Kriauciuniene J, Jakimavicius D, Sarauskiene D, Kaliatka T (2013) Estimation of uncertainty sources in the projections of Lithuanian river runoff. Stoch Environ Res Risk Assess 27(4):769–784. doi:10.1007/s00477-012-0608-7

    Article  Google Scholar 

  • Kuchment LS, Gelfan AN (1996) The determination of the snowmelt rate and the meltwater outflow from a snowpack for modelling river runoff generation. J Hydrol 179(1–4):23–36. doi:10.1016/0022-1694(95)02878-1

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241. doi:10.1029/1998WR900018

    Article  Google Scholar 

  • Martinec J, Rango A (1986) Parameter values for Snowmelt Runoff Modeling. J Hydrol 84(3–4):197–219. doi:10.1016/0022-1694(86)90123-X

    Article  Google Scholar 

  • Martinec J, Rango A, Roberts R (2007) The Snowmelt Runoff Model (SRM) User’s Manual. WinSRM Version 1.11. New Mexico State University, New Mexico, USA

  • Micovic Z, Quick MC (1999) A rainfall and Snowmelt Runoff Modelling approach to flow estimation at ungauged sites in British Columbia. J Hydrol 226(1–2):101–120. doi:10.1016/S0022-1694(99)00172-9

    Article  Google Scholar 

  • Molotch NP, Margulis SA (2008) Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison. Adv Water Resour 31(11):1503–1514. doi:10.1016/j.advwatres.2008.07.017

    Article  Google Scholar 

  • Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306(1–4):127–145. doi:10.1016/j.jhydrol.2004.09.005

    Article  Google Scholar 

  • Nagler T, Rott H, Malcher P, Müller F (2008) Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens Environ 112(4):1408–1420. doi:10.1016/j.rse.2007.07.006

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I. A discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Patricio V, Ximena V, Cartes M (2006) Estimating snowmelt volume using snow cover distribution modeling. 5th FRIEND World Conference. Climate variability and change-hydrological impacts. IAHS, Havana, Cuba

  • Peng D Z, Du Y (2010) Comparative analysis of several Lhasa River basin flood forecast models in Yarlung Zangbo River. iCBBE 2010, Chengdu, China. doi:10.1109/ICBBE.2010.5515463

  • Peng DZ, Xiong LH, Guo SL et al (2004) Advances in applications of MODIS to hydrology and water resources. Adv Water Sci 15(5):683–688 (In Chinese)

    Google Scholar 

  • Qiu J (2008) The third pole. Nature 454:393–396. doi:10.1038/454393a

    Article  CAS  Google Scholar 

  • Saltelli A, Tarantola S, Chan K (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39–56. doi:10.1080/00401706.1999.10485594

    Article  Google Scholar 

  • Shi Y, Gao XJ, Zhang DF, Giorgi F (2011) Climate change over the Yarlung Zangbo-Brahmaputra River basin in the 21st century as simulated by a high resolution regional climate model. Q Int 244(2):159–168. doi:10.1016/j.quaint.2011.01.041

    Article  Google Scholar 

  • Siderius C et al (2013) Snowmelt contributions to discharge of the Ganges. Sci Total Environ. doi:10.1016/j.scitotenv.2013.05.084

    Google Scholar 

  • Sirguey P, Mathieu R, Arnaud Y (2009) Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens Environ 113(1):160–181. doi:10.1016/j.rse.2008.09.008

    Article  Google Scholar 

  • Smith TJ, Marshall LA (2010) Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environ Model Softw 25(6):691–701. doi:10.1016/j.envsoft.2009.11.010

    Article  Google Scholar 

  • Stone R, Dutton E, Harris J, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res. doi:10.1029/2000JD000286

    Google Scholar 

  • Su JJ et al (2011) Effects of snowmelt on phosphorus and sediment losses from agricultural watersheds in Eastern Canada. Agric Water Manage 98(5):867–876. doi:10.1016/j.agwat.2010.12.013

    Article  Google Scholar 

  • Wang GX, Hu HC, Li TB (2009) The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J Hydrol 375(3–4):438–449. doi:10.1016/j.jhydrol.2009.06.046

    Article  Google Scholar 

  • WMO (1986) Intercomparison of models of snowmelt runoff. Switzerland, Geneva

    Google Scholar 

  • WMO (1992) Simulated real-time intercomparison of hydrological models. Switzerland, Geneva

    Google Scholar 

  • Woo MK, Thorne R (2006) Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol Proc 20(10):2129–2139. doi:10.1002/hyp.6205

    Article  Google Scholar 

  • Yang DQ, Zhao YY, Armstrong R, Robinson D (2009) Yukon River streamflow response to seasonal snow cover changes. Hydrol Proc 23(1):109–121. doi:10.1002/hyp.7216

    Article  Google Scholar 

  • Ye A, Duan Q, Zeng H, Lin L, Caiyun W (2010) A distributed time-variant gain hydrological model based on remote sensing. J Res Ecol 1(3):222–230. doi:10.3969/j.issn.1674-764x.2010.03.005

    Google Scholar 

  • You QL, Kang SC, Tian KM et al (2001) Preliminary analysis on climatic features at Mt. Nyainqentanglha, Tibetan Plateau. J Mt Sci 25(4):497–504 (In Chinese)

    Google Scholar 

  • Zhang YC, Li BL, Bao AM et al (2006a) Study on snowmelt runoff simulation in the Kaidu River basin. Sci China D 1(50):26–35. doi:10.1007/s11430-007-5007-4

    Google Scholar 

  • Zhang Y, Liu SY, Ding YJ (2006b) Spatial variation of degree-day factors on the observed glaciers in Western China. Acta Geographica Sinica 61(1):89–98 (In Chinese)

    Google Scholar 

  • Zhang X, Srinivasan R, Debele B, Hao F (2008) Runoff simulation of the headwaters of the Yellow River using the SWAT model with three snowmelt algorithms. J Am Water Resour Assoc 44:48–61. doi:10.1111/j.1752-1688.2007.00137.x

    Article  Google Scholar 

  • Zhou XB, Xie HJ, Hendrickx J (2005) Statistical evaluation of remotely sensed snow-cover products with constraints from streamflow and SNOTEL measurements. Remote Sens Environ 94(2):214–231. doi:10.1016/j.rse.2004.10.007

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of China (50909003) and the Fundamental Research Funds for the Central Universities (2009SC-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingzhi Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, L., You, J., Qiao, F. et al. Simulation of snowmelt runoff in ungauged basins based on MODIS: a case study in the Lhasa River basin. Stoch Environ Res Risk Assess 28, 1577–1585 (2014). https://doi.org/10.1007/s00477-013-0837-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0837-4

Keywords