Skip to main content
Log in

Wave height characteristics in the north Atlantic ocean: a new approach based on statistical and geometrical techniques

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The main characteristics of the significant wave height in an area of increased interest, the north Atlantic ocean, are studied based on satellite records and corresponding simulations obtained from the numerical wave prediction model WAM. The two data sets are analyzed by means of a variety of statistical measures mainly focusing on the distributions that they form. Moreover, new techniques for the estimation and minimization of the discrepancies between the observed and modeled values are proposed based on ideas and methodologies from a relatively new branch of mathematics, information geometry. The results obtained prove that the modeled values overestimate the corresponding observations through the whole study period. On the other hand, 2-parameter Weibull distributions fit well the data in the study. However, one cannot use the same probability density function for describing the whole study area since the corresponding scale and shape parameters deviate significantly for points belonging to different regions. This variation should be taken into account in optimization or assimilation procedures, which is possible by means of information geometry techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Abdalla S, Bidlot J, Janssen P (2005) Assimilation of ERS and ENVISAT wave data at ECMWF. In: ENVISAT & ERS symposium, Salzburg, 6–10 Sep 2004 (ESA SP-572, Apr 2005)

  • Amari S-I (1985) Differential geometrical methods in statistics. Springer lecture notes in statistics, vol 28. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Amari S-I, Nagaoka H (2000) Methods of information geometry. American Mathematical Society, Oxford University Press, Oxford

    Google Scholar 

  • Arwini K, Dodson CTJ (2007) Alpha-geometry of the Weibull manifold. In: Second basic science conference, Tripoli

  • Arwini K, Dodson CTJ (2008) Information geometry: near randomness and near independence. Lecture notes in mathematics, vol 1953. Springer-Verlag, Berlin

    Google Scholar 

  • Bidlot J, Janssen P (2003) Unresolved bathymetry, neutral winds and new stress tables in WAM. ECMWF Research Department Memo R60.9/JB/0400

  • Breivik LA, Reistad M (1994) Assimilation of ERS-1 altimeter wave heights in an operational numerical wave model. Weather Forecast 9(3):440–450

    Article  Google Scholar 

  • Cai Y, Dodson CTJ, Doig A, Wolkenhauer O (2002) Information-theoretic analysis of protein sequences shows that amino acids self-cluster. J Theor Biol 218(4):409–418

    CAS  Google Scholar 

  • Chu PC, Cheng KF (2007) Effect of wave boundary layer on the sea-to-air dimethylsulfide transfer velocity during typhoon passage. J Mar Syst 66:122–129

    Article  Google Scholar 

  • Chu PC, Cheng KF (2008) South China Sea wave characteristics during Typhoon Muifa passage in winter 2004. J Oceanogr 64:1–21

    Article  Google Scholar 

  • Chu PC, Qi Y, Chen YC, Shi P, Mao QW (2004) South China Sea wave characteristics. Part-1: validation of wavewatch-III using TOPEX/Poseidon data. J Atmos Ocean Technol 21(11):1718–1733

    Article  Google Scholar 

  • Dodson CTJ, Poston T (1991) Tensor geometry graduate texts in mathematics, vol 120, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Emmanouil G, Galanis G, Kallos G, Breivik LA, Heilberg H, Reistad M (2007) Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions. Ann Geophys 25(3):581–595

    Article  Google Scholar 

  • Ferreira JA, Soares CG (1999) Modelling distributions of significant wave height. Coast Eng 40:361–374

    Article  Google Scholar 

  • Ferreira JA, Soares CG (2000) Modelling the long-term distribution of significant wave height with the Beta and Gamma models. Ocean Eng 26:713–725

    Article  Google Scholar 

  • Galanis G, Anadranistakis M (2002) A one dimensional Kalman filter for the correction of near surface temperature forecasts. Meteorol Appl 9:437–441

    Article  Google Scholar 

  • Galanis G, Louka P, Katsafados P, Kallos G, Pytharoulis I (2006) Applications of Kalman filters based on non-linear functions to numerical weather predictions. Ann Geophys 24:2451–2460

    Article  Google Scholar 

  • Galanis G, Emmanouil G, Kallos G, Chu PC (2009) A new methodology for the extension of the impact in sea wave assimilation systems. Ocean Dyn 59(3):523–535

    Article  Google Scholar 

  • Gonzalez-Marco D, Bolanos-Sanchez R, Alsina JM, Sanchez-Arcilla A (2008) Implications of nearshore processes on the significant wave height probability distribution. J Hydraul Res 46(2, Suppl. SI):303–313

    Article  Google Scholar 

  • Greenslade D, Young I (2005) The impact of inhomogenous background errors on a global wave data assimilation system. J Atmos Ocean Sci 10(2):61–93

    Article  Google Scholar 

  • Iguzquiza E, Chica-Olmo M (2008) Geostatistical simulation when the number of experimental data is small: an alternative paradigm. Stoch Environ Res Risk Assess 22:325–337

    Article  Google Scholar 

  • Jansen PAEM (2000) ECMWF wave modeling and satellite altimeter wave data. In: Halpern D (ed) Satellites, oceanography and society. Elsevier, New York, pp 35–36

    Chapter  Google Scholar 

  • Janssen PAEM, Lionello P, Reistad M, Hollingsworth A (1987) A study of the feasibility of using sea and wind information from the ERS-1 satellite, part 2: use of scatterometer and altimeter data in wave modelling and assimilation. ECMWF report to ESA, Reading

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME D 82:35–45

    Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction problems. Trans ASME D 83:95–108

    Google Scholar 

  • Kalnay E (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge

    Google Scholar 

  • Komen G, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lionello P, Günther H, Janssen PAEM (1992) Assimilation of altimeter data in a global third generation wave model. J Geophys Res 97(C9):14453–14474

    Article  Google Scholar 

  • Lionello P, Günther H, Hansen B (1995) A sequential assimilation scheme applied to global wave analysis and prediction. J Mar Syst 6:87–107

    Article  Google Scholar 

  • Loffredo L, Monbaliu J, Bitner-Gregersen E, Toffoli A (2009) The role of spectral multimodality in wave climate design. In: Wave Hindcasting Workshop, Halifax

  • Makarynskyy O (2004) Improving wave predictions with artificial neural networks. Ocean Eng 31(5–6):709–724

    Article  Google Scholar 

  • Makarynskyy O (2005) Neural pattern recognition and prediction for wind wave data assimilation. Pac Oceanogr 3(2):76–85

    Google Scholar 

  • Muraleedharan G, Rao AD, Kurup PG, Unnikrishnan N, Mourani S (2007) Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coast Eng 54:630–638

    Article  Google Scholar 

  • Nordenstrøm N (1973) A method to predict long-term distributions of waves and wave-induced motions and loads on ships and other floating structures. Der Norske Veritas, Publication No. 81

  • Prevosto M, Krogstad HE, Robin A (2000) Probability distributions for maximum wave and crest heights. Coast Eng 40:329–360

    Article  Google Scholar 

  • Quentin C (2002) Etude de la surface océanique, de sa signature radar et de ses interactions avec le flux turbulent de quantite de mouvement dans le cadre de l’expérience FETCH (in French). PhD thesis, Universite de Paris

  • Rao ST, Zurbenko IG, Neagu R, Porter PS, Ku JY, Henry RF (1997) Space and time scales in ambient ozone data. Bull Am Meteor Soc 78(10):2153–2166

    Article  Google Scholar 

  • Resconi G (2009) Geometry of risk analysis (morphogenetic system). Stoch Environ Res Risk Assess 23:425–432

    Article  Google Scholar 

  • Rosmorduc V, Benveniste J, Lauret O, Maheu C, Milagro M, Picot N (2009) In: Radar altimetry tutorial. Benveniste J, Picot N (eds) http://www.altimetry.info

  • Spivak M (1965) Calculus on manifolds. W.A. Benjamin, New York

    Google Scholar 

  • Spivak M (1979) A Comprehensive introduction to differential geometry, vol 1–5, 2nd edn. Publish or Perish, Wilmington

    Google Scholar 

  • Thornton EB, Guza RT (1983) Transformation of wave height distribution. J Geophys Res 88(C10):5925–5938

    Article  Google Scholar 

  • Vanem E (2011) Long-term time-dependent stochastic modelling of extreme waves. Stoch Environ Res Risk Assess 25:185–209

    Article  Google Scholar 

  • Vanem E, Huseby A, Natvig B (2011) A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic. Stoch Environ Res Risk Assess. doi:10.1007/s00477-011-0522-4

  • WAMDIG, The WAM-Development and Implementation Group: Hasselmann S, Hasselmann K, Bauer E, Bertotti L, Cardone CV, Ewing JA, Greenwood JA, Guillaume A, Janssen PAEM, Komen GJ, Lionello P, Reistad M, Zambresky L (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810

    Google Scholar 

  • WISE Group (2007) Wave modelling—the state of the art. Prog Oceanogr 75:603–674

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the MARINA project (7th Framework Programme, Grant agreement number: 241402, http://www.marina-platform.info/), and the E-wave project (funded by the Research Promotion Foundation of Cyprus, http://www.oceanography.ucy.ac.cy/ewave/). The anonymous reviewers are also acknowledged for their constructive suggestions that essentially contributed to the final form of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Galanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galanis, G., Chu, P.C., Kallos, G. et al. Wave height characteristics in the north Atlantic ocean: a new approach based on statistical and geometrical techniques. Stoch Environ Res Risk Assess 26, 83–103 (2012). https://doi.org/10.1007/s00477-011-0540-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0540-2

Keywords

Navigation