Skip to main content
Log in

A comparative study of the adaptive choice of thresholds in extreme hydrologic events

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In the hydrologic analysis of extreme events such as precipitation or floods, the data can generally be divided into two types: partial duration series and annual maximum series. Partial duration series analysis is a robust method to analyze hydrologic extremes, but the adaptive choice of an optimal threshold is challenging. The main goal of this paper was to determine the best method for choosing optimal thresholds. Ten semi-parametric tail index estimators were applied to find the optimal threshold of a 24-h duration precipitation period using data from the Korean Meteorological Administration. The mean square errors of the 10 estimators were calculated to determine the optimal threshold using a semi-parametric bootstrap method. A modified generalized Jackknife estimator determined the best performance in this study among the 10 estimators evaluated with regard to estimating the mean square error of the shape estimator for the generalized Pareto distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams BJ, Papa F (2006) Urban stormwater management planning with analytical probabilistic models. Wiley, New York

    Google Scholar 

  • Balkema AA, de Haan L (1974) Residual life time at great age. Ann Prob 2:792–804

    Article  Google Scholar 

  • Beirlant J, Dierckx G, Goegebeur Y, Matthys G (1999) Tail index estimation and an exponential regression model. Extremes 2:177–200

    Article  Google Scholar 

  • Beirlant J, Dierckx G, Guillou A, Starica C (2002) On exponential representations of log-spacings of extreme order statistics. Extremes 5:157–180

    Article  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes: theory and application. Wiley, Chichester

    Book  Google Scholar 

  • Beirlant J, Figueiredo F, Gomes MI, Vandewalle B (2008) Improved reduced-bias tail index and quantile estimators. J Stat Plan Infer 138:1851–1870

    Article  Google Scholar 

  • Bernardara P, Schertzer D, Sauquet E, Tchiguirnskaia I, Lang M (2008) The flood probability distribution tail: how heavy is it? Stoch Environ Res Risk Assess 22:107–122

    Article  Google Scholar 

  • Cares J, Beirlant J, Vynckier P (1998) Bootstrap confidence interval for tail indices. Comput Stat Data Anal 26:259–277

    Article  Google Scholar 

  • Cares J, Beirlant J, Maes MA (1999) Statistics for modeling heavy tailed distribution in geology: part I. Methodology. Math Geol 31(4):391–410

    Article  Google Scholar 

  • Chaouche K, Hubert P, Lang G (2002) Graphical characterization of probability distribution tails. Stoch Environ Res Risk Assess 16:342–357

    Article  Google Scholar 

  • Cunnane C (1973) A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. J Hydrol 18:257–271

    Article  Google Scholar 

  • Danielsson J, de Haan L, Peng L, de Vries CG (1997) Using a bootstrap method to choose the sample fraction in tail index estimation. Technical Report TI 97–016/4. Tinbergen Institute, Rotterdam

    Google Scholar 

  • Dekkers ALM, de Hann L (1989) On the estimation of the extreme-value index and large quantile estimation. Ann Stat 17:1795–1832

    Article  Google Scholar 

  • Draisma G, de Haan L, Peng L, Themido Pareira T (1999) A bootstrap-based method to achieve optimality in estimating the extreme value index. Extremes 2(4):367–404

    Article  Google Scholar 

  • Dress BH, de Haan L, Resnick S (2000) How to make a hill plot. Ann Stat 28(1):254–274

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Google Scholar 

  • Fraga Alves MI, Gomes MI, de Haan L (2003) A new class of semi-parametric estimators of the second order parameter. Portugal Math 60(2):194–213

    Google Scholar 

  • Fraga Alves MI, Gomes MI, de Haan L, Neves C (2007) Mixed moments estimator and location invariant alternatives. Notas e Comunicacoes CEAUL 14/2007

  • Gomes MI, Martin MJ (2002) “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5:5–31

    Article  Google Scholar 

  • Gomes MI, Oliveira O (2001) The bootstrap methodology in statistics of extremes: choice of the optimal sample fraction. Extremes 4:331–358

    Article  Google Scholar 

  • Gomes MI, Martin MJ, Neves M (2000) Alternatives to a semi-parametric estimator of parameters of rare events-the Jackknife methodology. Extremes 3(3):207–229

    Article  Google Scholar 

  • Gomes MI, de Haan L, Rodrigues LH (2008a) Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses. J R Stat Soc B 70:31–52

    Google Scholar 

  • Gomes MI, e Castro LC, Fraga Avles MI, Pestana D (2008b) Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Hann leading contributions. Extremes 11:3–34

    Article  Google Scholar 

  • Gomes MI, Rodrigues LH, Pereira H, Pestana D (2008) A semi-parametric estimator of a “scale” second order parameter based upon the log-excesses. In: Proceedings of the ITI 2008 international conference on information technology interfaces, Cavtat, Croatia

  • Heaney JP, Huber WC, Medina MA Jr, Murphy MP, Nix SJ, Hasan SM (1977) Nationwide assessment of combined sewer overflows and urban stormwater discharges, vol II, Cost assessment. EPA-600/2–77-064. U.S. Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3:1163–1174

    Article  Google Scholar 

  • Howard C, Associates Ltd (1979) Analysis and use of urban rainfall in Canada. Report EPS 3-WP-79-4, Water Pollution Control Directorate, Environmental Protection Service. Environment Canada, Ottawa, ON

    Google Scholar 

  • Jansen D, de Vries C (1991) On the frequency of large stock returns: putting booms and busts into perspective. Rev Econ Stat 73:18–24

    Article  Google Scholar 

  • Madsen H, Rosbjerg D, Harremoës (1994) PDS-modeling and regional Bayesian estimation of extreme rainfalls. Nordic Hydrol 25(4):279–300

    Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 1: at-site modeling. Water Resour Res 33(4):747–757

    Article  Google Scholar 

  • Ndetei CJ, Opere AO, Mutua FM (2007) Flood frequency analysis in lake Victoria basin based on tail behaviour of distributions. J Kenya Meteorol Soc 1(1):44–54

    Google Scholar 

  • Nix SJ (1994) Urban stormwater modeling and simulation. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Pandey MD, Van Gelder PHAJM, Vrijling JK (2003) Bootstrap simulation for evaluation the uncertainty associated with peaks-over-threshold estimates of extreme wind velocity. Environmetrics 14:27–43

    Article  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Article  Google Scholar 

  • Rasmussen PF, Rosbjerg D (1991) Application of Bayesian principles in regional flood frequency estimation. In: Tsakiris G (ed) Advances in water resources technology. A.A. Balkema, Rotterdam, The Netherlands, pp 66–75

    Google Scholar 

  • Resnick S (1997) Discussion of the Danish data on large fire insurance losses. Astin Bull 27:139–151

    Article  Google Scholar 

  • Restrepo-Posada PJ, Eagleson PS (1982) Identification of independent rainstorms. J Hydrol 55:303–319

    Article  Google Scholar 

  • Rosbjerg D, Madsen H, Raumussen PF (1992) Prediction in partial duration series with generalized Pareto distributed exceedances. Water Resour Res 28(11):3001–3010

    Article  Google Scholar 

  • Willems P, Guillou A, Beirlant J (2007) Bias correction in hydrologic GPD based extreme value analysis by means of a slowly varying function. J Hydrol 338:221–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Jin Um.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Um, MJ., Cho, W. & Heo, JH. A comparative study of the adaptive choice of thresholds in extreme hydrologic events. Stoch Environ Res Risk Assess 24, 611–623 (2010). https://doi.org/10.1007/s00477-009-0348-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-009-0348-5

Keywords

Navigation