Skip to main content
Log in

Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Hydraulic conductivity distribution and plume initial source condition are two important factors affecting solute transport in heterogeneous media. Since hydraulic conductivity can only be measured at limited locations in a field, its spatial distribution in a complex heterogeneous medium is generally uncertain. In many groundwater contamination sites, transport initial conditions are generally unknown, as plume distributions are available only after the contaminations occurred. In this study, a data assimilation method is developed for calibrating a hydraulic conductivity field and improving solute transport prediction with unknown initial solute source condition. Ensemble Kalman filter (EnKF) is used to update the model parameter (i.e., hydraulic conductivity) and state variables (hydraulic head and solute concentration), when data are available. Two-dimensional numerical experiments are designed to assess the performance of the EnKF method on data assimilation for solute transport prediction. The study results indicate that the EnKF method can significantly improve the estimation of the hydraulic conductivity distribution and solute transport prediction by assimilating hydraulic head measurements with a known solute initial condition. When solute source is unknown, solute prediction by assimilating continuous measurements of solute concentration at a few points in the plume well captures the plume evolution downstream of the measurement points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreadis KM, Lettenmaier DP (2006) Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv Water Resour 29(6):872–886

    Article  Google Scholar 

  • Bennett AF (1992) Inverse methods in physical oceanography. Cambridge University Press, London, 346 pp

  • Burgers G, van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126:1719–1724

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222

    Article  Google Scholar 

  • Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122

    Article  Google Scholar 

  • Christakos G (2002) On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. Adv Water Resour 25:1257–1274

    Article  Google Scholar 

  • Christakos G (2005) Methodological developments in geophysical assimilation modeling. Rev Geophys 43(2):RG2001. doi:10.1029/2004RG000163

    Article  Google Scholar 

  • Clark MP, Slater AG, Barrett AP (2006) Assimilation of snow covered area information into hydrologic and land-surface models. Adv Water Resour 29(8):1209–1221

    Article  Google Scholar 

  • Daley R (1991) Atmospheric data analysis. Cambridge University Press, New York, p 457

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York, 369 pp

  • Drecourt JP, Madsen H, Rosbjerg D (2006) Calibration framework for a Kalman filter applied to a groundwater model. Adv Water Resour 29(5):719–734

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 253:343–367

    Article  Google Scholar 

  • Evensen G (2006) Data assimilation: the ensemble Kalman filter. Springer, New York

    Google Scholar 

  • Gu YQ, Oliver DS (2005) History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE J 10(2):217–224

    Google Scholar 

  • Gu YQ, Oliver DS (2006) The ensemble Kalman filter for continuous updating of reservoir simulation models. J Energy Resour Technol Trans ASME 128(1):79–87

    Article  CAS  Google Scholar 

  • Hoeksema RJ, Kitanidis PK (1984) An application of the statistical approach to the inverse problem in two-dimensional groundwater modeling. Water Resour Res 20(7):1003–1020

    Article  Google Scholar 

  • Houser PR, Shuttleworth WJ, Gupta HV (1998) Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour Res 34(12):3405–3420

    Article  Google Scholar 

  • Huang CL, Li X, Lu L, Gu J (2008a) Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter. Remote Sens Environ 112(3):888–900

    Article  Google Scholar 

  • Huang CL, Li X, Lu L (2008b) Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Remote Sens Environ 112(4):1320–1336

    Article  Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Elsevier, New York

    Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(D):35–45

    Google Scholar 

  • Li X, Koike T, Pathmathevan M (2004) A very fast simulated re-annealing (VFSA) approach for land data assimilation. Comput Geosci 30:239–248

    Article  Google Scholar 

  • Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43:W07401. doi:10.1029/2006WR005756

    Article  Google Scholar 

  • Margulis SA, McLaughlin D, Entekhabi D, Dunne S (2002) Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour Res 38(12):1299. doi:10.1029/2001WR001114

    Article  Google Scholar 

  • McLaughlin D (1995) Recent development in hydrologic data assimilation. Rev Geophys 33(suppl):977–984

    Article  Google Scholar 

  • McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161

    Article  Google Scholar 

  • Moradkhani HS, Sorooshian H, Gupta V, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147

    Article  Google Scholar 

  • Neupauer RM, Lin R (2006) Identifying sources of a conservative groundwater contaminant using backward probabilities conditioned on measured concentrations. Water Resour Res 42:W03424. doi:10.1029/2005WR004115

    Article  Google Scholar 

  • Neupauer RM, Wilson JL (2001) Adjoint-derived location and travel time probabilities for a multidimensional groundwater system. Water Resour Res 37(6):1657–1668

    Article  Google Scholar 

  • Poeter EP, Hill MC (1997) Inverse models: a necessary next step in ground-water modeling. Ground Water 35(2):250–260

    Article  CAS  Google Scholar 

  • Reichle RH, McLaughlin DB, Entekhabi D (2002a) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130:103–114

    Article  Google Scholar 

  • Reichle RH, Walker JP, Koster RD (2002b) Extended versus ensemble filtering for land data assimilation. J Hydrometeorol 3:728–740

    Article  Google Scholar 

  • Sorensen JVT, Madsen H, Madsen H (2004) Data assimilation in hydrodynamic modelling: on the treatment of non-linearity and bias. Stoch Environ Res Risk Assess 18(7):228–244

    Google Scholar 

  • Sun NZ (1994) Inverse problems in groundwater modeling. Kluwer, Dordrecht

    Google Scholar 

  • Van Geer FC, Te Stroet CBM, Zhou X (1991) Using Kalman filtering to improve and quantifying the uncertainty of numerical groundwater simulations: 1. The role of system noise and its calibration. Water Resour Res 27(8):1987–1994

    Article  Google Scholar 

  • Vrugt JA, Diks CGH, Gupta HV, Bouten W, Verstraten JM (2005a) Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour Res 41:W01017. doi:10.1029/2004WR003059

    Article  Google Scholar 

  • Vrugt JA, Robinson BA, Vesselinov VV (2005b) Improved inverse modeling for flow and transport in subsurface media: combined parameter and state estimation. Geophys Res Lett 32:L18408. doi:10.1029/2005GL023940

    Article  Google Scholar 

  • Wen X-H, Chen W-H (2005) Real-time reservoir model updating using ensemble Kalman filter. SPE J 11(4):431–442

    Google Scholar 

  • Yangxiao Z, Te Stroet CBM, van Geer FC (1991) Using Kalman filtering to improve and quantifying the uncertainty of numerical groundwater simulations: 2. Application to monitoring network design. Water Resour Res 27(8):1995–2006

    Article  Google Scholar 

  • Yeh T-CJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36(8):2095–2105

    Article  Google Scholar 

  • Yeh T-CJ, Zhang J (1996) A geostatistical inverse method for variably saturated flow in the vadose zone. Water Resour Res 32(9):2757–2766

    Article  Google Scholar 

  • Zhang D, Lu Z, Chen Y (2007) Dynamic reservoir data assimilation with an efficient, dimension-reduced Kalman filter. SPE J 12(1):108–117

    Google Scholar 

  • Zheng C, Bennett GD (2002) Applied contaminant transport modeling, 2nd edn. Wiley, New York

    Google Scholar 

  • Zheng C, Wang P (1999) MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide, Contract Report SERDP-99-1. U.S. Army Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  • Zhu J, Yeh T-CJ (2005) Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resour Res 41:W07028. doi:10.1029/2004WR003790

    Article  Google Scholar 

  • Zimmerman DA et al (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Chinese Academy of Science (CAS) International Partnership Project “The basic research for water issues of Inland River Basin in Arid Region” (CXTD-Z2005-2), the CAS West Development Action Plan Project (grant number: KZCX2-XB2-09) and the National Science Foundation of China (NSFC) project (grant number: 40528003, 40771036, and 40801126). The fourth author is supported in part by the FYAP program of the Florida State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill X. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Hu, B.X., Li, X. et al. Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source. Stoch Environ Res Risk Assess 23, 1155–1167 (2009). https://doi.org/10.1007/s00477-008-0289-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-008-0289-4

Keywords

Navigation