Skip to main content

Advertisement

Log in

Blue intensity parameters derived from Ponderosa pine tree rings characterize intra-annual density fluctuations and reveal seasonally divergent water limitations

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A set of novel parameters extracted from fine-spatial resolution blue intensity profiles characterizes intra-annual density fluctuations in Ponderosa pine and complements information on climate sensitivity obtained from radial growth.

Abstract

Rapidly rising evaporative demand threatens forests in semi-arid areas around the world, but the timing of stem growth response to drought is often coarsely known. This is partly due to a shortage of sub-annual growth records, particularly outside the Mediterranean region where most intra-annual density fluctuation (IADF) chronologies are based. We anticipate that an automated, cost-effective, and easily implementable method to characterize IADFs could foster more widespread development of sub-annual chronologies. We applied a peak detection algorithm to fine-spatial resolution blue intensity (BI) profiles of Ponderosa pine tree rings from two sites in southern Arizona (~300 m elevation difference). Out of seven BI parameters that characterize IADFs, peak height, width, and area showed satisfactory chronology statistics. We assessed the response of these BI and radial growth parameters to six monthly resolved climate variables and to the onset date of the North American summer monsoon. Radial growth at the lower-elevation site depended mainly on winter precipitation, whereas the higher site relied on spring and monsoon precipitation. A regular May–June drought period promoted IADFs in early ring portions at both sites. Yet, IADFs at the higher site were only formed, if spring was sufficiently humid to assume enough radial growth. Late-position IADFs were caused by a weak monsoon and additionally promoted by favorable conditions towards the end of the growing season. The contrast between sites is likely attributable to a three-week difference in the growing season onset, emphasizing the importance of growth phenology for drought impacts on forests in the US Southwest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahlström A, Raupach MR, Schurgers G et al (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–899

    Article  PubMed  Google Scholar 

  • Babst F, Frank D, Büntgen U, Nievergelt D, Esper J (2009) Effect of sample preparation and scanning resolution on the blue reflectance of Picea abies. TRACE Proc 7:188–195

    Google Scholar 

  • Babst F, Alexander MR, Szejner P et al (2014) A tree-ring perspective on the terrestrial carbon cycle. Oecologia 176:307–322

    Article  PubMed  Google Scholar 

  • Battipaglia G, DeMicco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and 13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188:1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Battipaglia G, DeMicco V, Brand WA, Saurer M, Aronne G, Linke P, Cherubini P (2013) Drought impact on water-use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ 37:382–391

    Article  PubMed  Google Scholar 

  • Björklund JA, Gunnarson BE, Seftigen K, Esper J, Linderholm HE (2014) Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Clim Past 10:877–885

    Article  Google Scholar 

  • Blessing CH, Werner RA, Siegwolf R, Buchmann N (2015) Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiol 35:585–598

    Article  PubMed  Google Scholar 

  • Bogino S, Bravo F (2009) Climate and intraannual density fluctuations in Pinus pinaster subsp. mesogeensis in Spanish woodlands. Can J For Res 39:1557–1565

    Article  Google Scholar 

  • Brice B, Lorion KK, Griffin D et al (2013) Signal strength in sub-annual tree-ring chronologies from Pinus ponderosa in Northwestern New Mexico. Tree Ring Res 69:81–86

    Article  Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124

    Article  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  • Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R (2007) Blue intensity in Pinus sylvestris tree rings: developing a new palaeoclimate proxy. Holocene 17:821–828

    Article  Google Scholar 

  • Campbell R, McCarroll D, Robertson I, Loader NJ, Grudd H, Gunnarson B (2011) Blue intensity in Pinus sylvestris tree rings: a manual for a new palaeoclimate proxy. Tree Ring Res 67:127–134

    Article  Google Scholar 

  • Campelo F, Nabais C, Freitas H, Gutierrez E (2007) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann Forest Sci 64:229–238

    Article  Google Scholar 

  • Campelo F, Vieira J, Battipaglia G, de Luis M, Nabais C, Freitas H, Cherubini P (2015) Which matters most for the formation of intra-annual density fluctuations in Pinus pinaster: age or size? Trees 29:237–245

    Article  Google Scholar 

  • Carvalho A, Nabais C, Vieira J, Rossi S, Campelo F (2015) Plastic response of tracheids in Pinus pinaster in a water-limited environment: adjusting lumen size instead of wall thickness. PLoS One 10:0136305

    Google Scholar 

  • Cheaib A, Badeau V, Boe J (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15:533–544

    Article  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370

    Article  Google Scholar 

  • Copenheaver CA, Pokorski EA, Currie JE, Abrams MD (2006) Causation of false ring formation in Pinus banksiana: a comparison of age, canopy class, climate and growth rate. For Ecol Manag 236:348–355

    Article  Google Scholar 

  • Cuny H, Rathgeber CBK, Frank DC, Fonti P, Fournier M (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241

    Article  PubMed  Google Scholar 

  • Cuny H, Rathgeber CBK, Frank DC et al (2015) Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat Plants. doi:10.1038/NPLANTS.2015.160

    PubMed  Google Scholar 

  • De Luis M, Novak K, Raventos J, Gricar J, Prislan P, Cufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169

    Article  Google Scholar 

  • De Micco V, Battipaglia G, Brand WA, Linke P, Saurer M, Aronne G, Cherubini P (2012) Discrete versus continuous analysis of anatomical and 13C variability in tree rings with intra-annual density fluctuations. Trees 26:513–524

    Article  Google Scholar 

  • De Micco V, Battipaglia G, Cherubini P, Aronne G (2013) Comparing methods to analyse anatomical features of tree rings with and without intra-annual density fluctuations (IADFs). Dendrochronologia 32:1–6

    Article  Google Scholar 

  • De Soto L, De la Cruz M, Fonti P (2011) Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can J For Res 41:1280–1294

    Article  Google Scholar 

  • Die AD, Kitin P, N’Guessan-Kouame F, Van den Bulcke J, Van Acker J, Beeckman H (2012) Fluctuations in cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast. Ann Bot 110:861–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschbach W, Nogler P, Schär E, Schweingruber FH (1995) Technical advances in the radiodensitometrical determination of wood density. Dendrochronologia 13:155–168

    Google Scholar 

  • Frank DC, Poulter B, Saurer M et al (2015) Water-use efficiency and transportation across European forests during the Anthropocene. Nat Clim Change 5:579–583

    Article  CAS  Google Scholar 

  • Franklin O, Johansson J, Dewar RC et al (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32:648–666

    Article  CAS  PubMed  Google Scholar 

  • Franks PJ, Adams MA, Amthor JS et al (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197:1077–1094

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Benecke CA, Rivieros-Walker AJ, Martin TA, Peter GF (2015) Automated quantification of intra-annual density fluctuations using microdensity profiles of mature Pinus taeda in replicated irrigation experiment. Trees 29:185–197

    Article  Google Scholar 

  • Griffin D, Meko DM, Touchan R, Leavitt S, Woodhouse CA (2011) Latewood chronology development for summer moisture reconstruction in the US Southwest. Tree Ring Res 67:87–101

    Article  Google Scholar 

  • Griffin D, Woodhouse CA, Meko DM et al (2013) North American monsoon precipitation reconstructed from tree-ring latewood. Geophys Res Lett 40:954–958

    Article  Google Scholar 

  • Gustafson EJ (2013) When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landsc Ecol 28:1429–1437

    Article  Google Scholar 

  • Higgins RW, Shi W (2001) Intercomparison of the principal modes of interannual and intraseasonal variability of the North American Monsoon System. J Clim 14:403–417

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in treering dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Leavitt S, Wright WE, Long A (2002) Spatial expression of ENSO, drought, and summer monsoon in seasonal 13C of ponderosa pine tree rings in southern Arizona and New Mexico. J Geophys Res 107:3–10

    Article  Google Scholar 

  • Liang E, Leuschner C, Dulamsuren C, Wagner B, Hauck M (2016) Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim Change 134:163–176

    Article  Google Scholar 

  • Lin YS, Medlyn BE, Duursma RA et al (2015) Optimal stomatal behavior around the world. Nat Clim Change 5:459–464

    Article  CAS  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730

    Article  PubMed  Google Scholar 

  • McCarroll D, Pettigrew E, Luckman A (2002) Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arct Antarct Alp Res 34:450–453

    Article  Google Scholar 

  • McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Change 5:669–672

    Article  Google Scholar 

  • McDowell NG, Allen CD, Marshall L (2010) Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Global Change Biol 16:399–415

    Article  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532

    Article  PubMed  Google Scholar 

  • McDowell NG, Williams AP, Xu C et al (2015) Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat Clim Change. doi:10.1038/NCLIMATE2873

    Google Scholar 

  • Meko DM, Baisan CH (2001) Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region. Int J Climatol 21:697–708

    Article  Google Scholar 

  • Nabais C, Campelo F, Vieira J, Cherubini P (2014) Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinea and Pinus pinaster along a latitudinal gradient in Portugal. Forestry 87:598–605

    Article  Google Scholar 

  • Novak K, Saz Sanches MA, Cufar K, Raventos J, de Luis M (2013) Age, climate and intra-annual density fluctuations in Pinus halepensis in Spain. IAWA Journal 34:459–474

    Article  Google Scholar 

  • Olivar J, Bogino S, Spiecker H, Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia 30:35–47

    Article  Google Scholar 

  • Ren P, Rossi S, Gricar J, Liang E, Cufar K (2015) Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Ann Bot 115:629–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Rossi S, Girard MJ, Morin H (2014) Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Global Change Biol 20:2261–2271

    Article  Google Scholar 

  • Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281

    Article  PubMed  Google Scholar 

  • Schwalm C, Williams CA, Schaefer K et al (2012) Reduction in carbon uptake during turn of the century drought in western North America. Nat Geosci 5:551–556

    Article  CAS  Google Scholar 

  • Schweingruber FH (1983) Der Jahrring. Haupt Verlag, Bern

    Google Scholar 

  • Sevanto S, Dickman T (2015) Where does the carbon go? Plant carbon allocation under climate change. Tree Physiol 35:581–584

    Article  PubMed  Google Scholar 

  • Sevanto S, McDowell N, Dickman T, Pangle R, Pockman W (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161

    Article  CAS  PubMed  Google Scholar 

  • Stahle DW, Cleaveland MK, Grissino-Mayer HD, Griffin RD, Fye FK, Therrell MD, Burnette DJ, Meko DM, Villanueva Diaz J (2009) Cool- and warm-season precipitation reconstructions over Western New Mexico. J Clim 22:3729–3750

    Article  Google Scholar 

  • Szejner P (2011) Tropical dendrochronology: exploring tree-rings of Pinus oocarpa in eastern Guatemala. Master Thesis, Georg-August Universität, Göttingen

  • Tatarinov F, Rotenberg E, Masyek K, Ogee J, Klein T, Yakir D (2015) Resilience to seasonal heat wave episodes in a Mediterranean pine forest. New Phytol. doi:10.1111/nph.13791

    Google Scholar 

  • Touchan R, Shishov VV, Meko DM, Nouiri I, Grachev A (2012) Process based model sheds light on climate sensitivity of Mediterranean tree-ring width. Biogeosciences 9:965–972

    Article  Google Scholar 

  • Venegas-Gonzalez A, von Arx G, Perez Chagas M, Filho MT (2015) Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees Struct Funct 29:423–435

    Article  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees Struct Funct 23:257–265

    Article  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2010) Intra-annual density fluctuations of Pinus pinaster are a record of climatic changes in the western Mediterranean region. Can J For Res 40:1567–1575

    Article  Google Scholar 

  • Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2014) Xylogenesis of Pinus pinaster under a Mediterranean climate. Ann Forest Sci 71:71–80

    Article  Google Scholar 

  • Vieira J, Campelo F, Rossi S, Carvalho A, Freitas H, Nabais C (2015) Adjustment capacity of maritime pine cambial activity in drought-prone environments. PLoS One 10:e0126223

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Liu S, Huntzinger D, Michalak AM, Viovy N, Post WM, Schwalm C, Schaefer K, Jacobson AR, Lu C, Tian H, Ricciuto DM, Cook RB, Mao J, Shi X (2014) NACP MsTMIP: global and North American driver data for multi-model intercomparison. Data set. http://daac.ornl.gov from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. doi:10.3334/ORNLDAAC/1220

  • Wilkinson S, Ogee J, Domec JC, Rayment M, Wingate L (2015) Biophysical modeling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts. Tree Physiol. doi:10.1093/treephys/tpv01

    PubMed  Google Scholar 

  • Williams AP, Allen CD, Macalady AK et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3:292–297

    Article  Google Scholar 

  • Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ 34:1920–1930

    Article  CAS  PubMed  Google Scholar 

  • Zang C, Biondi F (2013) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31:68–74

    Article  Google Scholar 

Download references

Acknowledgments

We thank Rafał Kostecki, Alicja Babst-Kostecka, Valerie Trouet, Jesper Björklund, Kristina Seftigen, and David Frank for their input and the fruitful discussions. FB acknowledges funding from the Swiss National Science Foundation (Grant P300P2_154543). Supported by a grant from the Macrosystems program in the Emerging Frontiers section of the US National Science Foundation (Award #1065790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flurin Babst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babst, F., Wright, W.E., Szejner, P. et al. Blue intensity parameters derived from Ponderosa pine tree rings characterize intra-annual density fluctuations and reveal seasonally divergent water limitations. Trees 30, 1403–1415 (2016). https://doi.org/10.1007/s00468-016-1377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1377-6

Keywords

Navigation