Skip to main content

Advertisement

Log in

Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic

Trees Aims and scope Submit manuscript

Abstract

Key message

Picea abies requires warming of both the above- and belowground parts of the tree for full resumption of cambial activity.

Abstract

Elevation-related decrease in growing season temperatures is a highly important factor in limiting tree growth in cold environments such as alpine treeline ecotones. In this study, we aimed to identify radial growth timing differences in Picea abies (L.) Karst. between the lower (timberline) and upper (treeline) parts of an alpine treeline ecotone. Over three growing seasons, soil and air temperatures were measured and phenology of wood formation was analyzed at two sites separated by 140 m of elevation in the Giant Mountains, Czech Republic. The results showed that there were two periods with significant differences in wood phenology between timberline and treeline. In the early part of the growing season, higher ambient temperatures at timberline led to higher number of cambial and enlarging cells here than at treeline. In the second part of the growing season, the bigger and/or more numerous tracheids at timberline than at treeline required more time for maturation. Significant delay in the beginning of wood formation at treeline in comparison to timberline was observed only in 2011, when soil was frozen markedly longer at treeline. We found that cambial activity significantly increased when soil temperature increased from near zero to a threshold temperature of 4–5 °C. We therefore suggest that for P. abies both the above- and belowground parts of the tree must be sufficiently warm for full resumption of cambial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328. doi:10.1007/s00425-005-0088-9

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–218. doi:10.1111/j.1365-2435.2007.01231.x

    Article  Google Scholar 

  • Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845. doi:10.1093/jxb/err309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbosa SM, Scotto MG, Alonso AM (2011) Summarising changes in air temperature over Central Europe by quantile regression and clustering. Nat Hazards Earth Syst Sci 11:3227–3233. doi:10.5194/nhess-11-3227-2011

    Article  Google Scholar 

  • Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R (2013) Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant 147:46–54

    Article  CAS  PubMed  Google Scholar 

  • Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006) Growth/climate response shift in a long subalpine spruce chronology. Trees 20:99–110. doi:10.1007/s00468-005-0017-3

    Article  Google Scholar 

  • Büntgen U, Frank DC, Kaczka RJ, Verstge A, Zwijacz-Kozica T, Esper J (2007) Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:689–702

    Article  PubMed  Google Scholar 

  • Ceppi P, Scherrer SC, Fischer AM, Appenzaller Ch (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32:203–213. doi:10.1002/joc.2260

    Article  Google Scholar 

  • Chaffey N (2002) Introduction. In: Chaffey N (ed) Wood formation in trees (cell and molecular biology techniques). Tylor and Francis, London, pp 1–8

    Chapter  Google Scholar 

  • Cuny EH, Rathgeber CBK, Frank D, Fonti P, Fournier M (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241. doi:10.1111/nph.12871

    Article  PubMed  Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570. doi:10.1111/j.1469-8137.2006.01945.x

    Article  PubMed  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12. doi:10.1016/S1369-5266(02)00003-1

    Article  CAS  PubMed  Google Scholar 

  • Głowicki B (1998) Long-term temperature record of Snezka station. In: Sarosiek J, Stursa J (eds) Geoekologiczne problemy Karkonoszy I. Acarus, Poznaň, pp 117–123 (in Polish with English abstract)

    Google Scholar 

  • Gorsuch DM, Oberbauer SF (2002) Effects of mid-season frost and elevated growing season temperature on stomatal conductance and specific xylem conductivity of the arctic shrub, Salix pulchra. Tree Physiol 22:1027–1034. doi:10.1093/treephys/22.14.1027

    Article  PubMed  Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951. doi:10.1093/aob/mcl050

    Article  PubMed Central  PubMed  Google Scholar 

  • Gričar J, Prislan P, Gryc V, Vavrčík H, de Luis M, Čufar K (2014) Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiol 34:869–881. doi:10.1093/treephys/tpu026

    Article  PubMed  Google Scholar 

  • Gruber A, Baumgartner D, Zimmermann J, Oberhuber W (2009) Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees 23:623–635. doi:10.1007/s00468-008-0307-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Gryc V, Hacura J, Vavrčík H, Urban J, Gebauer R (2012) Monitoring of xylem formation in Picea abies under drought stress influence. Dendrobiology 67:15–24

    Google Scholar 

  • Hartl-Meier C, Dittmar C, Zang C, Rothe A (2014) Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28:819–829. doi:10.1007/s00468-014-0994-1

    Article  Google Scholar 

  • Hoch G, Körner Ch (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Global Ecol Biogeogr 21:861–871. doi:10.1111/j.1466-8238.2011.00731.x

    Article  Google Scholar 

  • Holtmeier F-K (2009) Mountain timberlines: ecology, patchiness, and dynamics (Advances in Global Change Research), 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17:61–69. doi:10.1007/s00468-002-0209-z

    Article  Google Scholar 

  • Körner Ch (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner Ch (2012a) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel

    Book  Google Scholar 

  • Körner Ch (2012b) Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41:197–206. doi:10.1007/s13280-012-0313-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Körner Ch, Hoch G (2006) A test of treeline theory on a montane permafrost island. Arctic Antarct Alp Res 38:113–119

    Article  Google Scholar 

  • Körner Ch, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Larson PR (1969) Wood formation and the concept of wood quality. Yale Univeristy, New Haven

    Google Scholar 

  • Lenz A, Hoch G, Körner Ch (2013) Early season temperature controls cambial activity and total tree ring width at the alpine treeline. Plant Ecol Divers 6:365–375. doi:10.1080/17550874.2012.711864

    Article  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730. doi:10.1111/j.1365-3040.2010.02176.x

    Article  PubMed  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2011) Xylogenesis in black spruce: does soil temperature matter? Tree Physiol 32:74–82. doi:10.1093/treephys/tpr132

    Article  PubMed  Google Scholar 

  • Mayr S, Wieser G, Bauer H (2006) Xylem temperatures during winter in conifers at the alpine timberline. Agric For Meteorol 137:81–88. doi:10.1016/j.agrformet.2006.02.013

    Article  Google Scholar 

  • Migala K (2005) Climatic belts in the European mountains and the issue of global changes. Stud Geograf 78:1–149 (in Polish with English summary)

    Google Scholar 

  • Mitchell TD, Jones RG (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2009) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233. doi:10.1093/treephys/tpp108

    Article  PubMed  Google Scholar 

  • Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:294–301

    Article  Google Scholar 

  • Oribe Y, Kubo T (1997) Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol 17:81–87

    Article  PubMed  Google Scholar 

  • Petit G, Anfodillo T, Carraro V, Grani F, Carrer M (2011) Hydraulic constraints limit height growth in trees at high altitude. New Phytol 189:241–252. doi:10.1111/j.1469-8137.2010.03455.x

    Article  PubMed  Google Scholar 

  • Régent Instruments Inc. (2011) http://www.regentinstruments.com (Accessed 30 June 2014)

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–39. doi:10.1078/1125-7865-00034

    Article  Google Scholar 

  • Rossi S, Anfodillo T, Menardi R (2006) Trephor a new tool for sampling microcores from tree stems. IAWA J 27:89–97

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Gričar J et al (2008a) Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol Biogeogr 17:696–707. doi:10.1111/j.1466-8238.2008.00417.x

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008b) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208. doi:10.1111/j.1469-8137.2007.02235.x

    PubMed  Google Scholar 

  • Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, King GM, Krause C, Morin H, Oberhuber W, Prislan P, Rathgeber CBK (2013) A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Ann Bot 112:1911–1920. doi:10.1093/aob/mct243

    Article  PubMed Central  PubMed  Google Scholar 

  • Savidge RA (2000) Intrinsic regulation of cambial growth. J Plant Growth Regul 20:52–77. doi:10.1007/s003440010002

    Article  Google Scholar 

  • Savva Y, Oleksyn J, Reich PB, Tjoelker MG, Vaganov EA, Modrzynski J (2006) Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees 20:735–746. doi:10.1007/s00468-006-0088-9

    Article  Google Scholar 

  • Seo J-W, Eckstein D, Jalkanen R, Rickebusch S, Schmitt U (2008) Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol 28:105–112

    Article  PubMed  Google Scholar 

  • Simard S, Giovannelli A, Treydte K, Traversi ML, King ML, Frank GM, Fonti P (2013) Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol 33:913–923. doi:10.1093/treephys/tpt075

    Article  CAS  PubMed  Google Scholar 

  • Štursa J, Jeník J, Kubíková J, Rejmánek M, Sýkora T (1973) Snow cover in the West Giant Mountains during extreme winter 1969/1970 and its ecological significance. Opera Corcontica 10:111–146 (In Czech with English abstract)

    Google Scholar 

  • Tolasz R, Míková T, Valeriánová A, Voženílek V (2007) Climate atlas of Czechia, 1st edn. Czech Hydrometeorological Institute, Prague

    Google Scholar 

  • Treml V, Ponocná T, Büntgen U (2012) Growth trends and temperature responses of treeline Norway spruce in the Czech-Polish Sudetes Mountains. Clim Res 55:91–103. doi:10.3354/cr01122

    Article  Google Scholar 

  • Turcotte A, Morin H, Krause C, Deslauriers A, Thibeault-Martel M (2009) The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric For Meteorol 149:1403–1409. doi:10.1016/j.agrformet.2009.03.010

    Article  Google Scholar 

  • Ursache R, Nieminen K, Helariutt Y (2013) Genetic and hormonal regulation of cambial development. Physiol Plant 147:36–45

    Article  CAS  PubMed  Google Scholar 

  • Vittoz P, Rulence B, Freléchoux F (2008) Effects of climate and land-use change on the establishment and growth of cembrain pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic Antarct Alp Res 40:225–232. doi:10.1657/1523-0430

    Article  Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289. doi:10.1111/j.1469-8137.2012.04180.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution statement

VT coordinated research, collected, analyzed data (2010) and wrote the manuscript; JK and HK collected and analyzed data (2011, 2012); VG discussed results and commented on the manuscript.

Acknowledgments

This study was funded by grant project GACR P504/11/P557. J. Kašpar and H. Kuželová received support by the project SVV 260078/2014 and V. Gryc was supported by the European Social Fund and the state budget of the Czech Republic, Project “Indicators of Trees Vitality Reg. No. CZ.1.07/2.3.00/20.0265”. We appreciate the KRNAP authority for technical support and for permission to conduct research in a protected area. We are grateful to T. Ponocná for laboratory assistance and to J. Rosenthal for improving the English. Furthermore, we thank two anonymous reviewers for their helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Treml.

Additional information

Communicated by A. Nardini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treml, V., Kašpar, J., Kuželová, H. et al. Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees 29, 515–526 (2015). https://doi.org/10.1007/s00468-014-1129-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1129-4

Keywords

Navigation