Skip to main content
Log in

Literature review of acoustic and ultrasonic tomography in standing trees

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

High-resolution imaging is possible if high-frequency sensors are used together with a signal-processing and inversion algorithm that is well suited to a low signal-to-noise ratio and the effect of wood anisotropy.

Abstract

Wood is a biological growth medium, and given that standing trees adapt themselves in their growth to environmental conditions, their material properties vary with age. These changes result in variations that are far more complex than anisotropy. Wood quality and intraspecific variability can thus be studied to gain an understanding of the development mechanisms of trees, and this can be useful for clonal selection and the management of tree communities. A number of techniques are available to determine wood properties in standing trees, but the signal-processing approaches currently used are not always robust and do not always provide the image resolution needed in the particular cases of acoustic or ultrasonic tomography. This review paper thus aims to present important aspects that should be taken into account when using tomography techniques and addresses a number of open problems. A brief review of current non-destructive wood imaging techniques is initially presented followed by a comparison of the protocols, methods and models used in acoustic and ultrasonic tomography. The devices cited were studied in terms of measurement systems and signal processing. The analysis aimed to highlight and analyze the advantages and disadvantages of each device and describe challenges and trends. The effect of various parameters is discussed: frequency, signal-to-noise ratio, number of sensors and inversion algorithm. General conclusions are then drawn in relation to future signal-processing work in the acoustic and ultrasonic tomography of standing trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beall F (2002) Overview of the use of ultrasonic technologies in research on wood properties. Wood Sci Technol 36:197–212

    Article  CAS  Google Scholar 

  • Brancheriau L, Saadat-Nia MA, Gallet P, Lasaygues P, Pourtahmasi K, Kaftandjian V (2011a) Ultrasonic imaging of reaction wood in standing trees. 31th international symposium on Acoustical Imaging (AI31), Warsaw, Poland 399–411

  • Brancheriau L, Gallet P, Lasaygues P (2011b) Ultrasonic imaging defects in standing trees—development of an automatic device for plantations. 17th international symposium on non-destructive testing of wood, Sopron, Hungary, University of West Hungary 1:93–100

  • Brancheriau L, Ghodrati A, Gallet P, Thaunay P, Lasaygues P (2012) Application of ultrasonic tomography to characterize the mechanical state of standing trees (Picea abies). Journal of Physics: Conference series 353. doi:10.1088/1742-6596/353/1/012007

  • Bucur V (2003a) Non-destructive characterization and imaging of wood. Springer series in wood science

  • Bucur V (2003b) Techniques for high resolution imaging of wood structure: a review. Meas Sci Technol 14:91–98

    Article  Google Scholar 

  • Bucur V (2005) Ultrasonic techniques for non-destructive testing of standing trees. Ultrasonics 43(4):237–239

    Article  CAS  PubMed  Google Scholar 

  • Bucur V (2006) Acoustics of wood. Springer series in wood science, 2nd edition

  • Bucur V (2011) Acoustic tomography for tension wood detection in Eucalypts. Delamination in Wood. Wood Products and Wood-Based Composites. Springer, Netherlands, pp 255–268

    Chapter  Google Scholar 

  • Catena A (2003) Thermography reveals hidden tree decay. Arboricultural J 27:27–42

    Article  Google Scholar 

  • Catena A, Catena G (2008) Overview of thermal imaging for tree assessment. Arboricultural J 30:259–270

    Article  Google Scholar 

  • Deflorio G, Fink S, Schwarze FWMR (2008) Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Sci Technol 42(2):117–132

    Article  CAS  Google Scholar 

  • Dikrallah A, Hakam A, Kabouchi B, Brancheriau L, Baillères H, Famiri A, Ziani M, Gril J (2006) Experimental analysis of acoustic anisotropy of green wood by using guided waves. ESWM-COST Action E35, Florence, Italy 149–154

  • Divos F, Divos P (2005) Resolution of stress wave based acoustic tomography. 14th international symposium on non-destructive testing of wood, Germany 309–314

  • Dossing O (1988) Structural testing. Part 1—Mechanical mobility measurements. Bruel and Kjaer, Denmark

    Google Scholar 

  • Drénou C (2001) Vitalité et solidité de l’arbre: choisir les méthodes de diagnostic. Les cahiers d’arbre actuel, Institut pour le Développement Forestier, Paris

    Google Scholar 

  • Fournier M, Stokes A, Coutand C, Fourcaud T, Moulia B (2006) Tree biomechanics and growth strategies in the context of forest functional ecology. In: Herrel A, Speck T, Rowe N (eds) Ecology and biomechanics–a mechanical approach to the ecology of animals and plants. CRC Press Taylor and Francis, Boca Raton, pp 1–33

    Chapter  Google Scholar 

  • Gan TH, Hutchins DA, Billson DR, Schindel DW (2001) The use of broadband acoustic transducers and pulse compression techniques for air-coupled ultrasonic imaging. Ultrasonics 39:181–194

    Article  CAS  PubMed  Google Scholar 

  • Gan TH, Hutchins DA, Green RJ (2004) A swept frequency multiplication technique for air-coupled ultrasonic NDE. IEEE Trans UFFC 51(10):1271–1279

    Article  Google Scholar 

  • Gan TH, Hutchins DA, Green RJ, Andrews MK, Harris PD (2005) Non-contact, high-resolution ultrasonic imaging of wood samples using coded chirp waveforms. IEEE Trans UFFC 52(2):280–288

    Article  Google Scholar 

  • Gilbert P (1972) Iterative methods for three dimensional reconstruction of an object from projections. J Theor Biol 36:105–117

    Article  CAS  PubMed  Google Scholar 

  • Gilbert EA, Smiley ET (2004) Picus sonic tomography for the quantification of decay in white oak (quercus alba) and hickory (carya spp.). J Arboric 30(5):277–281

    Google Scholar 

  • Giudiceandrea F, Ursella E, Vicario E (2011) A high speed CT scanner for the sawmill industry. 17th international symposium on non-destructive testing of wood, University of West Hungary, Sopron, Hungary, 1:105–112

  • Habermehl A, Ridder H (1992) Computer tomographie am baum. Materialprüfung 34(10):325–329

    Google Scholar 

  • Hagrey SAA (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58(4):839–854

    Article  Google Scholar 

  • Hellier CJ (2001) Handbook of nondestructive evaluation. McGraw-Hill, New York

    Google Scholar 

  • Herman GT (1976) Quadratic optimization for image reconstruction. Comput Graph Image Process 5:319–332

    Article  Google Scholar 

  • Hislop G, Hellicar A, Li L, Greene K, Lewis C, Meder R (2009) Microwave radar for detection of resin defects in Pinus elliottii engelm var elliottii. Holzforschung 63:571–574

    Article  CAS  Google Scholar 

  • Jackson MJ, Tweeton DR (1994) MIGRATOM—Geophysical tomography using wavefront migration and fuzzy constraints. Bureau of Mines, Report of Investigations #9497

  • Johnstone D, Moore G, Tausz M, Nicolas M (2010) The measurement of wood decay in landscape trees. Arboriculture Urban For 36(3):121–127

    Google Scholar 

  • Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New York

    Google Scholar 

  • Kanda S, Shioya K, Yanagiya Y, Tamura Y, Adachi K (1998) Ultrasonic TOF-CT system for wooden pillars. IEEE Ultrasonics Symp 1:743–746

    Google Scholar 

  • Klug P, Lewald-Brudi M (2009) Shalltomographie. AFZ-DerWald 12:649–652

    Google Scholar 

  • Lakshminarayanan L, Lent A (1979) Methods of least squares and SIRT in reconstruction. J Theor Biol 76:267–295

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang X, Wang L, Allison R (2012) Acoustic tomography in relation to 2D ultrasonic velocity and hardness mappings. Wood Sci Technol 46(1):551–561

    Article  CAS  Google Scholar 

  • Lin CJ, Kao YC, Lin TT, Tsaib MJ, Wang SY, Lin LD, Wang YN, Chan MH (2008) Application of an ultrasonic tomographic technique for detecting defects in standing trees. Int Biodeterior Biodegradation 62(4):434–441

    Article  Google Scholar 

  • Maeda N (1985) A method for reading and checking phase times in autoprocessing system of seismic wave data. J Seismol Soc Jpn 38:365–379

    Google Scholar 

  • Martinis R (2002) Analisi e sviluppo di tecniche non invasive per la valutazione di carie in alberi in piedi. PhD thesis, Dipartimento di Biotecnologie Agrarie, Facoltà di Agraria

  • Martinis R, Socco LV, Sambuelli L, Nicolotti G, Schmitt O, Bucur V (2004) Tomographie ultrasonore pour les arbres sur pied. Annals Forest Sci 61(2):157–162

    Article  Google Scholar 

  • Maurer H, Schubert S, Bächle F, Clauss S, Gsell D, Dual J, Niemz P (2006) A simple anisotropy correction procedure for acoustic wood tomography. Holzforschung 60(5):567–573

    Article  CAS  Google Scholar 

  • Nicolotti G, Socco LV, Martinis R, Godio A, Sambuelli L (2003) Application and comparison of three tomographic techniques for detection of decay in trees. J Arboric 29(2):66–78

    Google Scholar 

  • Pellerin R, Ross R (2002) Non-destructive evaluation of wood. For Products Soc, Madison

    Google Scholar 

  • Pokorny J (2003) Urban tree risk management: a community guide to program design and implementation. USDA Forest Service NA-TP-03-03

  • Rabe C, Ferner D, Fink S, Schwarze FWMR (2004) Detection of decay in trees with stress waves and interpretation of acoustic tomograms. Arboricultural J 28:3–19

    Article  Google Scholar 

  • Rinn F (2004) Holzanatomische grundlagen der schall-tomographie an baumen. Neue Landschaft 7:44–47

    Google Scholar 

  • Rust S (2000) A new tomographic device for the non-destructive testing of trees. In: Proceedings of the 12th international symposium on non-destructive testing of wood, University of West Hungary, Sopron, Hungary, 233–237

  • Schubert S (2007) Acousto-ultrasound assessment of inner wooddecay in standing trees: possibilities and limitations. PhD thesis, ETH, Zurich

  • Schubert S, Gsell D, Dual J, Motavalli M, Niemz P (2009) Acoustic wood tomography on trees and the challenge of wood heterogeneity. Holzforschung 63:107–112

    Article  CAS  Google Scholar 

  • Shull PJ (2002) Nondestructive evaluation: theory, techniques, and applications. Marcel Dekker, New York

    Book  Google Scholar 

  • Sleeman R, van Eck T (1999) Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Phys Earth Planet Inter 113(1–4):265–275

    Article  Google Scholar 

  • Socco LV, Sambuelli L, Martinis R, Comino E, Nicolotti G (2004) Feasibility of ultrasonic tomography for non-destructive testing of decay on living trees. Res Non-destructive Evaluation 15(1):31–54

    Article  Google Scholar 

  • Tomikawa Y, Iwase Y, Arita K, Yamada H (1986) Non-destructive inspection of a wooden pole using ultrasonic computed tomography. IEEE Trans UFFC 33(4):354–358

    Article  CAS  Google Scholar 

  • Wang X, Divos F, Pilon C, Brashaw BK, Ross RJ, Pellerin RF (2004) Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools—a guide for use and interpretation. Technical report, United States Departement of Agriculture

  • Wang LH, Xu HD, Zhou CL, Li L, Yang XC (2007a) Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave. J For Res 18(3):221–225

    Article  CAS  Google Scholar 

  • Wang X, Allison RB, Wang L, Ross RJ (2007b) Acoustic tomography for decay detection in red oak trees. Research Paper FPL-RP-642, US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI

  • Yanagida H, Tamura Y, Kim KM, Lee JJ (2007) Development of ultrasonic time-of-flight computed tomography for hard wood with anisotropic acoustic property. Jpn J Appl Phys 46:5321–5325

    Article  CAS  Google Scholar 

  • Zhang H, Thurber C, Rowe C (2003) Automatic p-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull Seismol Soc Am 93:1904–1912

    Article  Google Scholar 

Download references

Author contribution statement

AA and FP: structure of the paper; main contribution in the chapters “Introduction” and “Perspectives”.

LB: contribution to the part concerning “signal processing/travel time determination” (Brancheriau et al. 2011b, 2012) and also to the discussion on the “influence of the inversion algorithm” in the case of wood (Eq. 3 and further).

PL: contribution to the discussion on conventional techniques for signal processing and inversion.

Conflict of interest

The authors hereby declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Arciniegas.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arciniegas, A., Prieto, F., Brancheriau, L. et al. Literature review of acoustic and ultrasonic tomography in standing trees. Trees 28, 1559–1567 (2014). https://doi.org/10.1007/s00468-014-1062-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1062-6

Keywords

Navigation