Skip to main content
Log in

Histocytological characteristics of Eucalyptus urophylla × Eucalyptus grandis shoot apical meristems of different physiological ages

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Histocytological characteristics of Eucalyptus urophylla × Eucalyptus grandis shoot apical meristems (SAMs) were described, comparing five outdoor and in vitro sources of akin genotypes differing in their physiological age. The size and the number of cells of the five zones identified within each SAM, i.e. the two tunica layers (L1 and L2), the central mother cells (CMC), the peripheral zone (PZ) and the combination of these four zones (4CZ) varied according to physiological age and plastochron phase. These five zones were significantly larger with higher numbers of cells for SAMs from mature and juvenile trees than for those from physiologically rejuvenated, in vitro mature and in vitro juvenile plants. However, these origin-related differences were not significant for SAMs in their early plastochron phase, to become obvious in a more advanced plastochron stage. Individual cell and nuclear measurements confirmed the rationale of distinguishing within SAM zones, characterized by specific cell and nuclear sizes liable to vary according to physiological age. The various histocytological investigations carried out established that SAM cell characteristics appeared to be the more reliable indicators of phase change. This was particularly true for the nucleoplasmic ratio and for more qualitative differences observed also at the nuclear level. SAM nuclei of the two in vitro origins were more evenly stained by naphtol blue-black, uniformly light for the juvenile source, whereas the mature source showed also darker nuclei. In contrast, SAM nuclei from outdoor origins had more chromocenters, darker and diffusely spread for the mature source than for the rejuvenated and the juvenile origins, where they were more peripherally distributed and where the nucleoli appeared more clearly. These results were discussed with respect to physiological ageing and in vitro culture influence, and suggest a determining influence of SAM cell nuclei on phase change phenomenon of arborescent species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with Image. J Biophotonics Int 11(7):36–42

    Google Scholar 

  • Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed  Google Scholar 

  • Bitonti MC, Cozza R, Chiappetta A, Giannino D, Ruffini-Castiglione M, Dewitte W, Mariotti D, Van Onckelen H, Innocenti AM (2002) Distinct nuclear organization, DNA methylation attern and cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical meristems in peach (Prunus persica (L.) Batsch). J Exp Bot 53(371):1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Bon MC (1988a) Nucleotide status and protein synthesis in vivo in the apices of juvenile and mature Sequoiadendron giganteum during budbreak. Physiol Plant 72:796–800

    Article  CAS  Google Scholar 

  • Bon MC (1988b) J16: an apex protein associated with juvenility of Sequoiadendron gigantem. Tree Physiol 4:381–387

    PubMed  CAS  Google Scholar 

  • Borchert R (1976) The concept of juvenility in woody plants. Acta Hortic 56:57–69

    Google Scholar 

  • Brennan EB, Weinbaum SA, Rosenheim JA, Karban R (2001) Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositonal and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae). Environ Entomol 30(6):1144–1149

    Article  Google Scholar 

  • Buffard-Morel J, Verdeil JL, Pannetier C (1992) Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir d’explant foliaire: étude histologique. Can J Bot 70:735–741

    Article  Google Scholar 

  • Buvat R (1955) Le méristème floral de la tige. Année Biologique 31:596–656

    Google Scholar 

  • Coppen JWJ (2002) Eucalyptus: the genus eucalyptus. Taylor and Francis, New York

    Google Scholar 

  • Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G (2009) Senescing cells share common features with dedifferentiating cells. Rejuvenation Res 12(6):435–443

    Article  PubMed  CAS  Google Scholar 

  • Davies FT (1984) Shoot RNA, cambial activity and indole butyric acid effectivity in seasonal rooting of juvenile and mature Ficus pumila cuttings. Physiol Plant 82:571–575

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley, New York

    Google Scholar 

  • Fisher DB (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16:92–96

    Article  PubMed  CAS  Google Scholar 

  • Fortanier EJ, Jonkers H (1976) Juvenility and maturity of plants as influenced by their ontogenetical and physiological ageing. Acta Hortic 56:37–43

    Google Scholar 

  • Fouret Y, Arnaud Y, Larrieu C, Miginiac E (1986) Sequoia sempervirens as an in vitro rejuvenation model. N Z J For Sci 16:319–327

    Google Scholar 

  • Fransz P (2008) Chromatin domains and function. In: Meier I (ed) Functional organization of the plant nucleus. Springer Verlag, New York, pp 131–156

    Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, Part 1 and 2. Exegetics Ltd, Basingstoke

    Google Scholar 

  • Gifford EM, Corson GE (1971) The shoot apex in seed plant. Bot Rev 37(2):143–229

    Article  CAS  Google Scholar 

  • Goh DKS, Bon MC, Aliotti F, Michaux-Ferrière N, Monteuuis O (2001) Somatic embryogenesis in three rattan species of major economic value. Bois et Forêts des Tropiques 267:83–90

    Google Scholar 

  • Greenwood MS (1987) I. Rejuvenation of forest trees. Plant Growth Regul 6:1–12

    Article  CAS  Google Scholar 

  • Hackett WP (1983) Phase change and intra-clonal variability. HortScience 18(6):12–16

    Google Scholar 

  • Hackett WP (1985) Juvenility, maturation and rejuvenation in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Jones CS (1999) An essay on juvenility, phase change, and heteroblasty in seed plants. Int J Plant Sci 160:S105–S111

    Article  PubMed  Google Scholar 

  • Jordan GJ, Potts BM, Wiltshire RJE (1999) Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp globulus (Tasmanian Blue Gum). Heridity 83:179–187

    Article  Google Scholar 

  • Kerstetter RA, Poethig RS (1998) The specification of leaf identity during shoot development. Annu Rev Cell Dev Biol 14:373–398

    Article  PubMed  CAS  Google Scholar 

  • Krenke NP (1940) The theory of the cycle of senescence and rejuvenation of plants and its practical application. Plant Breed Abst 15:1–135

    Google Scholar 

  • Lécolier A, Noirot M, Escoute J, Chrestin H, Verdeil JL (2009) Early effect of the mutation laurina on the functioning and size of the shoot apex in coffee tree and analysis of the plastochron phases: relationship with the dwarfism of leaves. Trees 23(3):673–682

    Article  Google Scholar 

  • Lüttge U, Hertel B (2009) Diurnal and annual rhythms in trees. Trees 23:683–700

    Article  Google Scholar 

  • Mankessi F, Saya A, Baptiste C, Nourissier S, Monteuuis O (2009) In vitro rooting of genetically related Eucalyptus urophylla × Eucalyptus grandis clones in relation to the time spent in culture. Trees 3:931–940

    Article  Google Scholar 

  • Mankessi F, Saya AR, Boudon F, Guedon Y, Montes F, Lartaud M, Verdeil JL, Monteuuis O (2010) Phase change-related variations of dome shape in Eucalyptus urophylla × Eucalyptus grandis shoot apical meristems. Trees 24:743–752

    Article  Google Scholar 

  • Medford JI (1992) Vegetative apical meristems. Plant Cell 4:1029–1039

    Article  PubMed  Google Scholar 

  • Monteuuis O (1987) Profils méristématiques de séquoias géants (Sequoiadendron giganteum Buchholz) jeunes et âgés durant les stades de repos végétatif et de débourrement. Comptes Rendus de l’Académie des Sciences Paris 305((III)):715–720

    Google Scholar 

  • Monteuuis O (1988) Aspects du clonage de séquoias géants jeunes et âgés. PhD thesis, Univ. Blaise Pascal, Clermont-Ferrand, p 190

  • Monteuuis O (1989a) Maturation concept and possible rejuvenation of arborescent species. Limits and promises of shoot apical meristems to ensure successful cloning. In: Gibson GI, Griffin AR, Matheson AC (eds) Breeding tropical trees: population structure and genetic improvement strategies in clonal and seedling forestry. Oxford Forestry Institute, Oxford and Winrock international, Arlington, pp 106–118

    Google Scholar 

  • Monteuuis O (1989b) Analyses microscopiques de points végétatifs de Sequoiadendron giganteum jeunes et âgés durant le repos végétatif et lors du débourrement. Bulletin de la Société. Botanique de France. Lettres Bot 136(4/5):317–326

    Google Scholar 

  • Monteuuis O, Gendraud M (1987) Nucleotide and nucleic acid status in shoot tips from juvenile and mature clones of Sequoiadendron giganteum during rest and growth phases. Tree Physiol 3:257–263

    PubMed  CAS  Google Scholar 

  • N’nan O, Hocher V, Verdeil JL, Konan JL, Ballo K, Mondeil F, Malaurie B (2008) Cryopreservation by encapsulation–dehydration of plumules of coconut (Cocos nucifera L.). Cryo Letters 29(4):339–350

    PubMed  Google Scholar 

  • Owston PW (1969) The shoot apex in eastern white pine: its structure, seasonal development, and variation within the crown. Can J Bot 47:1181–1188

    Article  Google Scholar 

  • Parke RV (1959) Growth periodicity and the shoot tip of Abies concolor. Am J Bot 46(2):110–118

    Article  Google Scholar 

  • Pierik RLM (1990) Rejuvenation and micropropagation. In: Progress in plant cellular and molecular biology. Nikkamp HJJ, Van Der Plas LHW, J Van Aartrijk (eds) Kluwer, Amsterdam, Netherlands, pp 91–101

  • Potts BM, Wiltshire RJE (1997) Eucalypt genetics and genecology. In: Williams JE, Woinarski JCZ (eds) Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge, pp 56–91

    Google Scholar 

  • Riding RT (1976) The shoot apex of trees of Picea mariana of differing rooting potential. Can J Bot 54:2672–2678

    Article  Google Scholar 

  • Robinson LW, Wareing PF (1969) Experiments on the juvenile-adult phase change in some woody species. New Phytol 68:67–78

    Article  Google Scholar 

  • Romberger JA (1963) Meristems: growth and development in woody plants. U.S. Dep. Agr. Tech. Bull. Ed.

  • SAS (2000) SAS/STAT user’s guide, Cary

  • Saya RA, Mankessi F, Toto M, Marien JN, Monteuuis O (2008) Advances in mass clonal propagation of Eucalyptus urophylla × E. grandis in Congo. Bois et Forêts des Tropiques 297:15–25

    Google Scholar 

  • Schaffalitzky de Muckadell M (1959) Investigations on aging of apical meristems in woody plants and its importance in silviculture. Kandrup and Wunsch’s Bogtrykkeri, København, pp 313–346

    Google Scholar 

  • Schwendiman J, Pannetier C, Michaux-Ferriere N (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot 62:43–52

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. WH Freeman and Company, New York

    Google Scholar 

  • Stein OL, Fosket EB (1969) Comparative developmental anatomy of shoots of juvenile and adult Hedera helix. Am J Bot 56(5):546–551

    Article  Google Scholar 

  • Sussex IA (1989) Developmental programming of the shoot meristem. Cell 56:225–229

    Article  PubMed  CAS  Google Scholar 

  • Valledor L, Hasbun R, Meijon M, Rodriguez JL, Santamaria E, Viejo M, Berdasco M, Feito I, Fraga MF, Canal MJ, Rodriguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue Organ Cult 91:75–86

    Article  CAS  Google Scholar 

  • Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88(1):9–18

    Article  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12(6):245–252

    Article  PubMed  CAS  Google Scholar 

  • Von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis by manipulation of phase change and culture environment. Tree Physiol 20:921–928

    Google Scholar 

  • Wareing PF (1987) Phase change and vegetative propagation. In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops. Academic Press, London, pp 263–270

    Google Scholar 

  • Watelet-Gonod MC, Favre JM (1981) Miniaturisation et rajeunissement chez Dahlia variabilis (variété Télévision) cultivé in vitro. Annales des Sciences Naturelles Botaniques 13(2–3):51–67

    Google Scholar 

  • Weigel D, Jürgens G (2002) Stem cells that make stems. Nature 415:751–754

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to ATP CIRAD “Méristèmes”, International Foundation for Science, the French Ministry of Foreign Affairs and CIRAD DESI for financial contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Monteuuis.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mankessi, F., Saya, A., Montes, F. et al. Histocytological characteristics of Eucalyptus urophylla × Eucalyptus grandis shoot apical meristems of different physiological ages. Trees 25, 415–424 (2011). https://doi.org/10.1007/s00468-010-0516-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0516-8

Keywords

Navigation