Skip to main content
Log in

Thermal dissipation probe measurements of sap flow in the xylem of trees documenting dynamic relations to variable transpiration given by instantaneous weather changes and the activities of a mistletoe xylem parasite

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The thermal dissipation probe was described in the early 1930s for the demonstration of a volume and mass flow of sap in the conductive elements of the xylem in trees. It was subsequently developed further and is now widely used in physiological ecology including measurements in the field. Thermal dissipation demonstrates the occurrence of sap flow and allows determination of its velocity. Here we report simultaneous continuous measurements of sap flow using the thermal dissipation technique and of transpiration by infrared gas analysis for diurnal and annual cycles in a deciduous and an evergreen oak tree, Quercus robur L. and Quercus turneri Willd., respectively, in a deciduous and an evergreen conifer, Larix decidua Mill. and Pinus griffithii McClell., respectively, and the host/mistletoe consortium of the deciduous linden Tilia mandschurica Rupr. & Max. and the evergreen Viscum album L. We show (1) that in diurnal cycles sap flow closely follows dynamic changes of the rate of transpiration elicited by daily fluctuations of weather parameters (sunshine, cloudiness, air temperature and humidity), (2) that in annual cycles sap flow reflects autumnal yellowing and shedding of leaves of the deciduous trees. We report for the first time comparative measurements of sap flow towards mistletoe shoots and host branches in a parasite/host consortium. This demonstrates (3) that mistletoes maintain considerably larger sap flow rates in their xylem conduits than the adjacent host branches dragging the transpiration stream of their host towards their own shoots. We also show (4) that even after the deciduous host has shed its leaves and itself does not transpire any more the evergreen mistletoe towards its shoots can maintain the persistence of a continuous sap flow via the stem and branches of the host as long as frost does not prevent that. The work presented underlines the contention that transpiration is the driving force for sap flow with continuous files of water in the xylem. It shows for the first time that mistletoes direct the flow of water through host roots and stems towards its own shoots by not only performing stronger transpiration as it is known from the literature but also by maintaining larger sap flow rates in the xylem conduits of its stems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angeles G, Bond B, Boyer JS, Brodribb T, Brooks JR, Burns MJ, Cavender-Bares J, Clearwater M, Cochard H, Comstock J, Davis SD, Domec J-C, Donovan L, Ewers F, Gartner B, Hacke U, Hinckley T, Holbrook NM, Jones HG, Kavanagh K, Law B, López-Portillo J, Lovisolo C, Martin T, Martínez-Vilalta J, Mayr S, Meinzer FC, Melcher P, Mencuccini M, Mulkey S, Nardini A, Neufeld HS, Passioura J, Pockman WT, Pratt RB, Rambal S, Richter H, Sack L, Salleo S, Schubert A, Schulte P, Sparks JP, Sperry J, Teskey R, Tyree M (2004) The cohesion-tension theory. New Phytol 163:451–452. doi:10.1111/j.1469-8137.2004.01142.x

    Article  Google Scholar 

  • Baumgartner A (1934) Thermoelektrische Untersuchungen über die Geschwindigkeit des Transpirationsstromes. Z Bot 28:81–136

    Google Scholar 

  • Becker P, Asmat A, Mohmad J, Moksin M, Tyree M (1997) Sap flow rates of mangrove trees are not unusually low. Trees (Berl) 11:432–435. doi:10.1007/s004680050104

    Article  Google Scholar 

  • Bertsch A (1966) CO2-Gaswechsel und Wasserhaushalt der aerophilen Grünalge Apatococcus lobatus. Planta 70:46–72. doi:10.1007/BF00539910

    Article  Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320

    PubMed  Google Scholar 

  • Huber B (1932) Beobachtungen und Messungen pflanzlicher Saftströme. Ber Dtsch Bot Ges 50:89–109

    CAS  Google Scholar 

  • Huber B, Schmidt E (1937) Eine Kompensationsmehtode zur thermoelektrischen Messung langsamer Saftströme. Ber Dtsch Bot Ges 55:514–529

    Google Scholar 

  • Koch W (1956) Eine neue Methode zur Lösung des Küvettenproblems bei der Registrierung des Gaswechsels. Naturw 43:64. doi:10.1007/BF00628629

    Article  CAS  Google Scholar 

  • Köstner B, Granier A, Cermák J (1998) Sapflow measurements in forest stands: methods and uncertainties. Ann Sci For 55:13–27. doi:10.1051/forest:19980102

    Article  Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110. doi:10.1007/BF00377327

    Article  Google Scholar 

  • Lange OL, Green TGA, Ziegler H (1988) Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green and blue-green photobionts and in photosymbiodemes. Oecologia 75:494–501. doi:10.1007/BF00776410

    Article  Google Scholar 

  • Lösch R (1998) Plant water relations. Prog Bot 60:193–233

    Google Scholar 

  • Lüttge U, Haridasan M, Fernandes GW, de Mattos EA, Trimborn P, Franco AC, Caldas LS, Ziegler H (1998) Photosynthesis in mistletoes in relation to their hosts at various sites in tropical Brazil. Trees (Berl) 12:167–174. doi:10.1007/s004680050136

    Article  Google Scholar 

  • Meinzer FC, James SA, Goldstein G, Woodruff D (2003) Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 26:1147–1155. doi:10.1046/j.1365-3040.2003.01039.x

    Article  Google Scholar 

  • Meinzer FC, Woodruff DR, Domec J-C, Goldstein G, Campanello PI, Gatti MG, Villalobos-Vega R (2008) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41. doi:10.1007/s00442-008-0974-5

    Article  PubMed  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, San Francisco

    Google Scholar 

  • Nobel PS, Jordan PW (1983) Transpiration stream of desert species: resistances and capacitances for a C3, a C4 and a CAM plant. J Exp Bot 34:1379–1391. doi:10.1093/jxb/34.10.1379

    Article  Google Scholar 

  • Popp M, Richter A (1997) Ecophysiology of xylem-tapping mistletoes. Prog Bot 59:657–674

    Google Scholar 

  • Richter A, Popp M, Mensen R, Stewart RG, von Willert DJ (1995) Heterotrophic carbon gain of the parasitic angiosperm Tapinanthus oleifolius. Aust J Plant Physiol 22:537–544

    Article  CAS  Google Scholar 

  • Schmitt AK, Martin CE, Lüttge U (1989) Gas exchange and water vapour uptake in the atmospheric CAM bromeliad Tillandsia recurvata L.: the influence of the trichomes. Bot Acta 102:80–84

    Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007) Biophysical properties and functional significance of stem water storage tissues in neotropical savanna trees. Plant Cell Environ 30:236–248. doi:10.1111/j.1365-3040.2006.01623.x

    Article  PubMed  Google Scholar 

  • Schubert A (1939) Untersuchungen über den Transpirationsstrom der Nadelhölzer von Fichte und Lärche. Tharandt Forstbot Zbl 90:821–883

    Google Scholar 

  • Schulze E-D, Turner NC, Glatzel G (1984) Carbon, water and nutrient relations of two mistletoes and their hosts: a hypothesis. Plant Cell Environ 7:293–299

    CAS  Google Scholar 

  • Tyree MT (1997) The cohesion–tension theory of sap ascent: current controversies. J Exp Bot 48:1753–1765

    CAS  Google Scholar 

  • Vieweg G-H, Ziegler H (1960) Thermoelektrische Registrierung der Geschwindigkeit des Transpirationsstromes. Ber Dtsch Bot Ges 73:221–226

    Google Scholar 

  • Weber J (1963) Über den Zusammenhang zwischen der Transpirationsintensität und der Geschwindigkeit des Transpirationsstromes. Dr. rer.-nat. Dissertation, TH-Darmstadt

  • Wei C, Steudle E, Tyree MT (1999a) Water ascent in plants: do ongoing controversies have a sound basis? Trends Plant Sci 4:372–375. doi:10.1016/S1360-1385(99)01466-1

    Article  PubMed  Google Scholar 

  • Wei C, Tyree MT, Steudle E (1999b) Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion–tension theory taking hydraulic architecture into consideration. Plant Physiol 121:1191–1205. doi:10.1104/pp.121.4.1191

    Article  PubMed  CAS  Google Scholar 

  • Wheeler TD, Stroock AD (2008) The transpiration of water at negative pressures in a synthetic tree. Nature 455:208–212. doi:10.1038/nature07226

    Article  PubMed  CAS  Google Scholar 

  • Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol 18:633–644

    PubMed  Google Scholar 

  • Whitehead D, Jarvis PG (1981) Coniferous forest and plantations. In: Kozlowski TT (ed) Water deficits and growth, vol 6. Academic Press, New York, pp 49–152

    Google Scholar 

  • Ziegler H (1986) Control of photosynthesis by variation of diffusion resistance in mistletoes and their hosts. In: Marcello R, Clijsters H, van Poucke M (eds) Biological control of photosynthesis. Advances in agricultural biotechnology.. Martinus Nijnhoff, Dordrecht, pp 171–185

    Google Scholar 

  • Zimmermann U, Zhu JJ, Meinzer FC, Goldstein G, Schneider H, Zimmermann G, Benkert R, Thürmer F, Melcher P, Webb D, Haase A (1994a) High molecular weight organic compounds in the xylem sap of mangroves: implications for long-distance water transport. Bot Acta 107:218–229

    CAS  Google Scholar 

  • Zimmermann U, Meinzer FC, Benkert R, Zhu JJ, Schneider H, Goldstein G, Kuchenbrod E, Haase A (1994b) Xylem water transport: is the available evidence consistent with the cohesion theory? Plant Cell Environ 17:1169–1181. doi:10.1111/j.1365-3040.1994.tb02015.x

    Article  Google Scholar 

  • Zimmermann U, Schneider H, Wegner LH, Haase A (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162:575–615. doi:10.1111/j.1469-8137.2004.01083.x

    Article  Google Scholar 

  • Zimmermann D, Westhoff M, Zimmermann G, Geßner P, Gessner A, Wegner LH, Rokitta M, Ache P, Schneider H, Vásquez JA, Kruck W, Shirley S, Jakob P, Hedrich R, Bentrup F-W, Bamberg E, Zimmermann U (2007) Foliar water supply of tall trees: evidence for mucilage-facilitated moisture uptake from the atmosphere and the impact on pressure bomb measurements. Protoplasma 232:11–34. doi:10.1007/s00709-007-0279-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Claudia Deigele for her help with literature search and Professor Dr. Dr. hc. mult. Otto Ludwig Lange for critically reading the manuscript and very valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich E. Lüttge.

Additional information

Communicated by H. G. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, H., Weber, J. & Lüttge, U.E. Thermal dissipation probe measurements of sap flow in the xylem of trees documenting dynamic relations to variable transpiration given by instantaneous weather changes and the activities of a mistletoe xylem parasite. Trees 23, 441–450 (2009). https://doi.org/10.1007/s00468-009-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0332-1

Keywords

Navigation