Skip to main content

Advertisement

Log in

Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Forest trees are fundamental components of our environment, mainly due to their long lifetime and important role in forest ecology. In the past, some non-native tree species and taxa from traditional breeding have induced severe environmental impacts such as biological invasion, changes in the ‘gene pool’, and spread of diseases in forestry. Genetically modified trees obtained in different research groups worldwide are particularly confronted with increased concerns regarding biosafety issues. In the light of current biosafety research worldwide, various threats facing forests and natural tree populations are evaluated in this review: biological invasions, horizontal gene transfer, vertical gene transfer and effects on other organisms. Results available from groups working in biosafety research and risk avoidance using forest trees, with emphasis on transgenic trees, are reviewed. Independent biosafety research as well as the establishment of biosafety research programs for forest trees financed by national and international authorities is now more important than ever before. Biosafety problems detected in the past clearly show the importance of a prior case-by-case evaluation of non-native species, new taxa and also genetically modified trees according to the precautionary principle before their release to avoid risks to the environment and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table 2

Similar content being viewed by others

References

  • Aldhouse P (2000) Inquiry blames missed warnings for scale of Britain's BSE Crisis. Nature 408:3–5

    Article  ADS  Google Scholar 

  • Anderson TW (1974) The chestnut pollen decline as a time horizont in lake sediments in eastern North America. Can J Earth Sci 11:678–685

    Google Scholar 

  • Aoki S, Syono K (1999) Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc Nat Acad Scien 96:13229–13234

    Article  ADS  CAS  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The Genetics of colonizing Species. Academic Press, New York, USA, pp 147–168

    Google Scholar 

  • Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  • Bauce E, Carisey N, Dupont A, van Frankenhuyzen K (2004) Bacillus thuringiensis subsp. kurstaki aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Tortricidae). J Econ Entomol 97:1624–1634

    PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acid Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Binggeli P (1996) A taxonomic, biogeographical and ecological overview of invasive woody plants. J Veg Sci 7:121–124

    Article  Google Scholar 

  • BioSicherheit (2003) http://www.biosicherheit.de

  • Bizili SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biot 18:213–217

    Article  CAS  Google Scholar 

  • BMVEL (2004) Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft. http://www.verbraucherministerium.de/data/0008735FEEBD105EA5FD6521C0A8D816.0.pdf

  • Boland GJ, Brimner T (2004) Nontarget effects of biological control agents. New Phytologist 163:455–457

    Article  Google Scholar 

  • Brasileiro ACM, Leplé JC, Muzzin J, Ounnoughi D, Michel MF, Jouanin L (1991) An alternative approach for gene transfer in trees using wild-type Agrobacterium strains. Plant Mol Biol 17:441–452

    Article  PubMed  CAS  Google Scholar 

  • Brayshaw TC (1965) Native poplars of southern Alberta and their hybrids, Publ No. 1109. Department of Forestry, Otawa, Canada, pp 40

    Google Scholar 

  • Bright C (1999) Life out of bounds. Bioinvasion in a borderless world. Earthscan Publications Ltd, New York, USA

    Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Brown JR (2003) Ancient horizontal gene transfer. Nature Rev Gen 4(2):121–132

    Article  CAS  Google Scholar 

  • Brunner AM, Mohamed R, Meilan R, Sheppard LA, Rottman WH, Strauss S (1998) Genetic engineering of sexual sterility in shade trees. J Arboriculture 24:263–271

    Google Scholar 

  • Cadogan BL, Scharbach RD (2003) Design and evaluation of an aerial spray trial with true replicates to test the efficacy of Bacillus thuringiensis insecticide in a boreal forest. J Econ Entomol 96:388–395

    PubMed  Google Scholar 

  • Cagelli L, Lefèvre F (1995) The conservation of Populus nigra L. and gene flow with cultivated poplars in Europe. For Genet 2:135–144

    Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry's Fertile Crescent: The application of biotechnology to forest trees. Plant Biotech J 1:141–154

    Article  CAS  Google Scholar 

  • Carlton JT (1999) A journal of biological invasions. Biol Invas 1:1

    Article  Google Scholar 

  • CBD (2003) Convention on Biological Diversity. http://www.biodiv.org/biosafety/ratification.asp

  • Chiang V (2002) From rags to riches. Nat Biot 20:557–558

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Cock MJW (2003) Biosecurity and forests: An introduction with particular emphasis on forest pests. FAO (Food and Agriculture Organization of the United Nations). Forestry Department. ftp://ftp.fao.org/docrep/fao/006/j1467e/J1467E.pdf pp 60

  • Coyle DR, Nebeker TE, Hart ER, Mattson WJ (2005) Biology and management of insect pests in North American intensively managed hardwood forest systems. Annu Rev Entomol 50:1–29

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biot 20(6):567–574

    Article  CAS  Google Scholar 

  • DeAngelis CD (2000) Conflict of interest and the Public Trust. JAMA 284:2237–2238

    Article  PubMed  CAS  Google Scholar 

  • Demeritt ME (1990) Populus L. Poplar hybrids. Salicaceae—Willow family. In: Burns RM, Honkala BH (eds) Silvics of North America, Vol 2. USDA For Serv, Washington, USA, pp 570–576

    Google Scholar 

  • DiFazio SP (2002) Measuring and Modelling Gene Flow from Hybrid Poplar Plantations: Implications for Transgenic Risk Assessment. PhD Dissertation, Oregon State University

  • Dong X (2004) Pathogen-induced systemic DNA rearrangement in plants. Trends Plant Sci 9:60–61

    Article  PubMed  CAS  Google Scholar 

  • Dörfler W, Schubbert R (1998) Uptake of foreign DNA from the environment: the gastrointestinal tract and the placenta as portals of entry. Weiner Klin Woch 110–112:40–44

    Google Scholar 

  • Doyle U (2002) Ist die rechtliche Regulierung gebietsfremder Organismen in Deutschland ausreichend? In: Kowarik I, Starfinger U (eds) Biologische Invasionen: Herausforderung zum Handeln? Neobiota 1:259–272

  • Dwinell LD (1997) The pinewood nematode: regulation and mitigation. Annu Rev Phytopathol 35:153–166

    Article  PubMed  CAS  Google Scholar 

  • Eckenwalder JE (1977) North American cottonwoods (Populus, Salicaceae) of sections Abaso and Aigeiros. J Arnold Arboretum 58:193–208

    Google Scholar 

  • Eckenwalder JE (1984a) Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. I. Population studies. Can J Bot 62:317–324

    Article  Google Scholar 

  • Eckenwalder JE (1984b) Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. II. Taxonomy. Can J Bot 62:325–335

    Article  Google Scholar 

  • Eckenwalder JE (1984c) Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. III. Paleobotany and evolution. Can J Bot 62:336–342

    Article  Google Scholar 

  • EEA (European Environmengt Agency) (2004) Late lessons from early warnings: the precautionary principle 1896–2000 Environmental issue report No 22. http://reports.eea.eu.int/environmental_issue_report_2001_22/en/tab_content_RLR

  • Ellstrand NC, Kristina A, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Nat Acad Sci USA 97:7043–7050

    Article  PubMed  ADS  CAS  Google Scholar 

  • EFSA (2004) Opinion of the Scientific Panel on Genetically Modified Organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J 48:1–18, http://www.efsa.eu.int/science/gmo/gmo_opinions/384_en.html

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biot 18:784–788

    Article  PubMed  CAS  Google Scholar 

  • EUFORGEN (2003) http://www.ipgri.cgiar.org/networks/euforgen/About_EUFORGEN.asp

  • FDA (Food and Drug Administration, USA) (1998) Use of Antibiotic Resistance Marker Genes in Transgenic Plants: Guidance for Industry. http://vm.cfsan.fda.gov/~lrd/biotechm.html

  • Filkowski J, Yeoman A, Kovalchuk O, Kovalchuk I (2004) Systemic plant signal triggers genome instability. Plant J 38:1–11

    Article  PubMed  CAS  Google Scholar 

  • Fink S (1999) Pathological and regenerative plant anatomy. In: Zimmermann W, Braun HJ (eds) Encyclopedia of plant anatomy, Bd. 14, Teil 6. Borntaeger, Berlin, Stuttgart

    Google Scholar 

  • Fisahn A, Winter G (1999) Die Aussetzung gebietsfremder Organismen. Recht und Praxis. Texte des Umweltbundesamtes 55/99, Berlin, 204 pp

    Google Scholar 

  • Fisher R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. The Plant J 11:489–498

    Article  Google Scholar 

  • Fitter A, Perrins J, Williamson M (1990) Weed probability challenged. Biotechnol 8:473

    Article  Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen-Populus. I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581

    Article  PubMed  CAS  Google Scholar 

  • Fladung M, Gieffers W (1993) Resistance reactions of leaves and tubers of rolC transgenic tetraploid potato to bacterial and fungal pathogens. Correlation with sugar, starch and chlorophyll content. Phys Mol Plant Pathol 42:123–132

    Article  CAS  Google Scholar 

  • Fladung M, Gieffers W (2003) Untersuchungen zum Hormon- und Kohlenhydrat-Metabolismus in rolC transgenen Aspenklonen und deren mögliche Auswirkungen auf phytopathologische Eigenschaften. In: Fladung M (ed) Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Nr. 214, Hamburg, Germany, pp 81–112

  • Fladung M, Großmann K, Ahuja MR (1997) Alterations in hormonal and developmental characteristics in transgenic Populus conditioned by the rolC gene from Agrobacterium rhizogenes. J Plant Physiol 150:420–427

    CAS  Google Scholar 

  • Fladung M, Hoenicka H (2004) Erzeugung transgener steriler Zitterpappeln zur Verhinderung eines vertikalen Gentransfers in forstliche Ökosysteme. Gesunde Pflanzen 56:195–200

    Article  CAS  Google Scholar 

  • Fladung M, Kaldorf M, Gieffers W, Ziegenhagen B, Muhs HJ, Kumar S (2004) Field analysis of transgenic aspen. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, India, pp 393–403

    Google Scholar 

  • Fladung M, Kumar S (2002) Gene stability in transgenic aspen-Populus. III. T-DNA repeats influence transgene expression differentially among different transgenic lines. Plant Biology 4:329–338

    Article  CAS  Google Scholar 

  • Fladung M, Nowitzki O, Ziegenhagen B, Kumar S (2003) Vegetative and generative dispersal capacity of field released transgenic aspen trees. Trees 17:412–416

    Google Scholar 

  • Gartland KMA, Kellison RC, Fenning TM (2002) biotechnology and Europe's Forests of the future. A Challenge document for presentation and discussion at Forest Biotechnology Forum in Europe: Impending Barriers, Policy, and Implications. Edinburgh, Scotland, September 12–13, 2002

  • Gartland KMA, Crow RM, Fenning TM, Gartland JS (2003) Genetically modified trees: production, properties and potential. J Arboriculture 29:259–266

    Google Scholar 

  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  PubMed  CAS  Google Scholar 

  • Genissel A, Viard F, Bourguet D (2000) Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula × P. tremuloides. Hereditas 133:85–93

    Article  PubMed  CAS  Google Scholar 

  • Glandorf DCM, Bakker PAHM, Van Loon LC (1997) Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microsflora. Acta Bot Neerl 46:85–104

    CAS  Google Scholar 

  • Golz C (1999) Stand der internationalen Regulierung von gentechnisch veränderten Organismen und der Risikoabschätzung. In: Gebietsfremde Organismen in Deutschland. Ergebnisse des Arbeitsgespräches am 5. und 6. März 1998, Texte des Umweltbundesamtes 55/99:99–107

  • Grant V (1981) Plant Speciation. Columbia University Press, New York, USA

    Google Scholar 

  • Gregor W, Mette MF, Staginnus C, Matzke MA, Matzke AJ (2004) A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol 134:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  PubMed  CAS  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation and rejuvenation in woody plants. Hort Rev 7:109–155

    Google Scholar 

  • Hancock JF, Grumet R, Hokanson SC (1996) The opportunity for escape of engineered genes from transgenic crops. Hort Sci 31:1080–1085

    Google Scholar 

  • Hancock JF (2003) A Framework for Assessing the Risk of Transgenic crops. Bio Sci 53:512–519

    Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102

    Article  Google Scholar 

  • Hawkins S, Leple JC, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Ann Forest Sci 60:427–438

    Article  Google Scholar 

  • Hoenicka H, Fladung M (2003) Evaluation of strategies for avoiding vertical gene transfer. Proceedings International Congress “BIOFOR 02”-Sustainable Forestry, Wood products and Biotechnology; Vitoria-Gasteiz, Spanien, NEIKER (Instituto Vasco de Investigación y Desarrollo Agrario), pp 221–226

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  PubMed  CAS  Google Scholar 

  • Huenneke LF, Vitousek PM (1990) Seedling and clonal recruitment of the invasive tree Psidium cattleianum: implications for management of native Hawaiian forests. Biological Conservation 53:199–211

    Article  Google Scholar 

  • Hull R, Covey SN, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Micr Ecol Health Dis 12:1–5

    CAS  Google Scholar 

  • Inderjit, Duke S (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539

    Article  PubMed  CAS  Google Scholar 

  • InfoNet-Umwelt-SH (Schleswig Holstein) (2004) http://www.umwelt.schleswig-holstein.de/?21838

  • Jakowitsch J, Mette MF, van der Winden J, Matzke MA, Matzke AJM (1999) Integrated sequences define a unique class of dispersed DNA in plants. Proc Natl Acad Sci 87:1633–1637

    Google Scholar 

  • Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  ADS  CAS  Google Scholar 

  • Klopfenstein NB, Shi N-Q, Kernan A, McNabb HS, Hall RB, Hart ER, Thornburg RW (1991) A transgenic Populus hybrid expresses a wound-inducible potato Proteinase Inhibitor II-CAT gene fusion. Can J For Res 21:1321–1328

    Article  CAS  Google Scholar 

  • Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA and Christou P (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. The Plant J 17:591–601

    Article  CAS  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  PubMed  CAS  Google Scholar 

  • Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Nat Acad Sci 99:14280–14285

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kouassi KC, Lorenzetti F, Guertin C, Cabana J, Mauffette Y (2001) Variation in the susceptibility of the forest tent caterpillar (Lepidoptera: Lasiocampidae) to Bacillus thuringiensis variety kurstaki HD-1: effect of the host plant. J Econ Entomol 94:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423:760–762

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kowarik I (1992) Einführung und Ausbreitung nichteinheimischer Gehölzarten in Berlin und Brandenburg. Verh Bot Ver Berlin Brandenburg Beih 3:188

    Google Scholar 

  • Kowarik I (1995) Time-lags in biological invasions. In: Pyšek P, Prach K, Rejmánek M, Wade W (eds) Plant invasions:general aspects and special problems. SPB Academic Publ, Amsterdam, pp 15–38

    Google Scholar 

  • Kowarik I (1999) Ecological aspects of the release of transgenic trees- experiences from biological invasions, In: Proceedings “Release of transgenic trees- present achievements, problems, future prospects”. Humboldt University, Berlin, pp 66–73

    Google Scholar 

  • Kowarik I (2003a) Human agency in biological invasions: secondary releases foster naturalization and population expansion of alien plant species. Biol Invas 5:293–312

    Google Scholar 

  • Kowarik I (2003b) Biologische Invasionen: Neophyten und Neozoen in Mitteleuropa. Verlag Eugen Ulmer, Stuttgart (Hohenheim)

    Google Scholar 

  • Kumar A, Bennetzen J (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2000a) Determination of T-DNA repeat formation and promoter methylation in transgenic plants. Bio Techniques 28:1128–1137

    CAS  Google Scholar 

  • Kumar S, Fladung M (2000b) Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into a receiptive spot of host genome. Mol Gen Genet 264:20–28

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31:543–551

    Article  PubMed  CAS  Google Scholar 

  • Lebel EG, Masson J, Bogucki A, Paszkowski J (1993) Stress-induced intrachromosomal recombination in plant somatic cells. Proc Natl Acad Sci USA 90:422–426

    Article  PubMed  ADS  CAS  Google Scholar 

  • Lefèvre F, Legionnet A, de Vries S, Turok J (1998) Strategies for the conservation of a pioneer tree species, Populus nigra L., in Europe. Genet Sel Evol 30:S181–S196

    Article  Google Scholar 

  • Leplé JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141

    Article  Google Scholar 

  • Lida W, Yifan H, Jianjun H (2003) Transgenic forest trees for insect resistance, Chapter 10. In: Kumar S, Fladung M (eds) Molecular Genetics and Breeding of Forest Trees. The Haworth Press, Binghamton, USA, pp 243–261

    Google Scholar 

  • Liebold AM, MacDonald WL, Bergdahl D, Mastro VC (1995) Invasion by exotic forest pests: a threat to forest ecosystems. Forest Science 41:1–49

    Google Scholar 

  • Loope LL, Müller-Dumbois D (1989) Characteristics of invaded islands, with special reference to Hawaii. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M (eds) Biological invasions: a global perspective. John J Wiley and Sons Ltd., Scope, pp 257–280

    Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed  CAS  Google Scholar 

  • Luby JJ, McNichol RF (1995) Gene flow from cultivated to wild raspberries in Scotland: developing a basis for risk assessment for testing and development of transgenic cultivars. Theor Appl Genet 90:113–1137

    Article  Google Scholar 

  • Lucht JM, Mauch-Mani B, Steiner HY, Metraux JP, Ryals J, Hohn B (2002) Pathogen stress increases somatic recombination frequency in Arabidopsis. Nature Genetics 30:311–314

    Article  PubMed  Google Scholar 

  • MacNabb H (1971) A new look at Dutch elm disease control. The Amer Forest 58:14–18

    Google Scholar 

  • Mariani C, DeBeuckeleer J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimeric ribonuclease gene. Nature 347:737–741

    Article  ADS  CAS  Google Scholar 

  • Matzke MA, Mette MF, Aufsatz W (2000) More on CaMV. Nat Biot 18:579

    Article  CAS  Google Scholar 

  • McNabb H (1971) A new look at Dutch elm disease control. The Ames Forester 58:14–18

    Google Scholar 

  • Meilan R, Brunner AM, Skinner JS, Strauss SH (2001) Modification of Flowering in Transgenic Trees. In: Morohoshi N, Komamine A (eds) Molecular Breeding of Woody Plants. Elsevier Science, BV, pp 247–256

    Chapter  Google Scholar 

  • Meyer P (1995) Gene silencing in higher plants and related phenomena in other eukaryotes. Springer Verlag, Berlin, Germany

    Google Scholar 

  • Mitzukami Y, Huang H, Tudor M, Hu Y, Ma H (1996) Functional domains of the floral regulator AGAMOUS: Characterization of the DNA binding domain and analysis of dominant and analysis of dominant negative mutations. Plant Cell 8:831–845

    Article  PubMed  Google Scholar 

  • Morra MJ (1994) Assessing the impact of transgenic plant products on soil organisms. Mol Ecol 3:53–55

    Article  Google Scholar 

  • Mouradov A, Sawbridge T, Hamdorf B, Glassick T, Murphy L, Marla S, Yang Y, Teasdale RD (1998) Genetic engineering of reproductive sterility in Pinus radiata. Acta Hoticulturae 461:417–423

    CAS  Google Scholar 

  • Mower JP, Stefanovic S, Young GJ, Palmer D (2004) Gene transfer from parasitic to host plants. Nature 432:165–166

    Article  PubMed  ADS  CAS  Google Scholar 

  • Mullin TJ, Bertrand S (1998) Environmental release of transgenic trees in Canada-potencial benefits and assessment of biosafety. The Forestry Chronicle 74:203–220

    Google Scholar 

  • Myers RL (1983) Site susceptibility to invasion by the exotic tree Melaleuca quinquenervia in southern Florida. J App Ecol 20:645–658

    Article  Google Scholar 

  • Myhr AI, Traavik T (2002) Genetically modified (GM) crops: precautionary science and conflicts of interests. J Agric Env Ethics 16:227–247

    Article  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–305

    Article  PubMed  ADS  CAS  Google Scholar 

  • OECD (2000) Environmental Health and Safety Publications. Series on harmonization of regulatory oversight in Biotechnology No. 16. Consensus document on the Biology of Populus L. (Poplars). Paris, France

  • Pääbo S, Gifford JA, Wilson AC (1988) Mitochondrial DNA sequences from a 7000-year old brain. Nucl Ac Res 16:9775–9787

    Article  Google Scholar 

  • Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J (1994) Homologous recombination and gene silencing in plants. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Peerenboom E (2000) German health minister calls time out for Bt maize. Nat Biot 18:374

    Article  CAS  Google Scholar 

  • Pilate G, Ellis D, Hawkins S (1997) Transgene expression in field-grown poplar. In: Klopfstein NB, Chun YW, Kim MS, Ahuia MR (eds) Micropropagation, Genetic Engineering, and Molecular Biology of Populus. Gen. Tech. Rep. RM-GRT-297. USDA, Fort Collins, CO, pp 84–89

    Google Scholar 

  • Pilate G, Emma G, Holt K, Petit-Conil M, Lapierre C, Leplè JC, Pollet B, Mila I, Webster EA, Marstorp H, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biot 20:607–612

    Article  PubMed  CAS  Google Scholar 

  • Puchta H, Swoboda P, Gal S, Blot M, Hohn B (1995) Somatic intrachromosomal homologous recombination events in populations of plant siblings. Plant Mol Biol 28:281–292

    Article  PubMed  CAS  Google Scholar 

  • Puls J, Reisen M, Saake B (2003) Vergleichende Untersuchungen zur Zusammensetzung der Zellwandkomponenten gentechnisch veränderter Aspen. In: Fladung M (ed) Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Nr. 214, Hamburg, Germany, pp 45–52

  • Reichert S, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conservation Biology 11:193–203

    Article  Google Scholar 

  • Richardson DM, Higgins SI (1998) Pines as invaders in the southern hemisphere. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 450–473

    Google Scholar 

  • Richert-Poggeler KR, Shepherd RJ (1997) Petunia vein-clearing virus: a plant pararetrovirus with the core sequences for an integrase function. Virology 236:137–146

    Article  PubMed  CAS  Google Scholar 

  • Ries G, Buchholz G, Frohnmeyer H, Hohn B (2000) UV-damage-mediated induction of homologous recombination in Arabidopsis is dependent on photosynthetically active radiation. Proc Natl Acad Sci USA 97:13425–13429

    Article  PubMed  ADS  CAS  Google Scholar 

  • Riesenberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridisation? Crit Rev Plant Sci 12:213–241

    Article  Google Scholar 

  • Rogers DL (2002) In situ genetic conservation of Monterey pine (Pinus radiata D. Don): Information and recommendations. 2002. Report No. 26. University of California Division of Agriculture and Natural Resources, Genetic Resources Conservation Program, Davis, CA, USA. 92 p, http://www.grcp.ucdavis.edu/publications/index.htm

  • Rood SB, Campbell JS, Despins T (1986) Natural poplar hybrids from southern Alberta. I. Continuous variation for foliar characteristics. Can J Bot 64:1382–1388

    Article  Google Scholar 

  • Rouget M, Richardson DM, Nel JL, van Wilgen BW (2002) Commercially important trees as invasive alien- towards spatially explicit risk assessment at a national scale. Biological Invasions 4:397–412

    Article  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:737–738

    Article  PubMed  Google Scholar 

  • Schell J, Van Montagu M, De Beuckeleer M, De Block M, Depicker A, De Wilde M, Engler G, Genetello C, Hernalsteens JP, Holsters M, Seurinck J, Silva B, Van Vliet F, Villarroel R (1979) Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc R Soc Lond B Biol Sci 204:251–266

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schlüter K, Potrykus I (1996) Horizontaler Gentransfer von transgenen Pflanzen zu Mikroorganismen (Bakterien und pilzen) und seine ökologische Relevanz. In: Schulte E, Käppeli O (eds) Gentechnisch veränderte krankheits- und schädlingsresistente Nutzpflanzen. Basel, Switzerland, pp 161–191

  • Schreiner EJ (1974) Populus L. Poplar. In: Schopmeyer CS (ed) Agricultural Handbook No 450, Forest Service, Seeds of woody plants in the United States. USDA, Washington, DC, pp 645–655

    Google Scholar 

  • Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Nat Acad Sci USA 94:961–966

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schwab E, Krause HA (2003) Holztechnologische Untersuchungen an gentechnisch veränderten Aspen. In: Fladung M (ed) Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Nr. 214, Hamburg, Germany, pp 53–80

  • Shine C, Williams N, Gündling L (2000) A guide to designing legal and institutional frameworks on alien invasive species. Environmental policy and Law Paper No. 40. IUCN, Gland, Cambridge, Bonn, XVI + 138 pp

    Google Scholar 

  • Simberloff D, Relva MA, Nuñez M (2002) Gringos en el bosque: introduced tree invasion in a native Nothofagus/Austrocedrus forest. Biol Invasions 4:35–53

    Article  Google Scholar 

  • Simberloff D (2003) Confronting introduced species: a form of xenophobia? Biol Invasions 5:179–192

    Article  Google Scholar 

  • Skinner JS, Meilan R, Ma C, Strauss S (2003) The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol Breed 12:119–132

    Article  CAS  Google Scholar 

  • Smalla K, Van Overbeek LS, Pukall R, Van Elsas JD (1993) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microb Ecol 13:47–58

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Starfinger U (1998) On success in plant invasions. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions: Ecological Mechanisms and Human Responses. Backhuys, Leiden, The Netherlands, pp 33–42

    Google Scholar 

  • Starfinger U, Kowarik I, Rode M, Schepker H (2003) From desirable ornamental plant to pest accepted addition to the flora?- the perception of an alien tree species through the centuries. Biol Invas 5:323–335

    Article  Google Scholar 

  • Stirn S (2000) Antibiotic resistance and horizontal gene transfer. BIOGHUM. http://www.rrz.uni.hamburg.de/BIOGHUM/agbiosich/uba0408.htm

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    Article  CAS  Google Scholar 

  • Strauss SH, Knowe SA, Jenkins J (1997) Benefits and risk of transgenic, Roundup Ready cottonwoods. J Forestry 95:12–19

    Google Scholar 

  • Strauss SH, DiFazio SP, Meilan R (2001) Genetically modified poplars in context. The Forestry Chronicle 77:271–279

    Google Scholar 

  • Strauss SH, Brunner AM, Busov VB, Ma C, Meilan R (2004) Ten lessons from 15 years of transgenic populus research. Forestry 77:455–465

    Article  Google Scholar 

  • Tabbener HE, Cottrell JE (2002) The use of PCR based DNA markers to study the paternity of poplar seedlings. For Ecol Manag 179:363–376

    Article  Google Scholar 

  • Tepfer M (2002) Risk assessment in virus-resistant transgenic plants. Ann Rev Phytopathol 40:467–491

    Article  CAS  Google Scholar 

  • Usher MB (1988) Biological invasions of nature reserves: a search for generalisations. Biol Conserv 44:119–135

    Article  Google Scholar 

  • Valentine L (2003) Agrobacterium tumefaciens and the Plant: The David and Goliath of Modern Genetics. Plant Physiol 133:948–955

    Article  PubMed  CAS  Google Scholar 

  • Van Aken B, Moon Yoon J, Schnorr JL (2004) Biodegradation of Nitro-substituted explosives 2,4,6-Trinitrotoluene, Hexahydro-1,3,5-Trinitro-1,3,5-Tetrazocine by a Phytosymbiotic Methylobacterium sp. Associated with poplar tissues (Populus deltoides x nigra DN34). App Env Microb 508–517

  • Van den Eede G, Aarts H, Buhk H-J, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van den Vossen J., von Wright A, Wackernagel W, Wilks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Tox 42:1127–1156

    Article  CAS  Google Scholar 

  • Vitousek PM, D'Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zealand J Ecol 21:1–16

    Google Scholar 

  • Vogel G (2005) Safety Research Falls Foul of German Politics. Science 307:1706

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2004) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  Google Scholar 

  • Wilcove DS, Rothstein D, Dobow J, Phillips A, Losos E (1998) Quantifying threats to imperilled species in the United States. Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience 48:607–615

    Article  Google Scholar 

  • Williamson M (1993) Invaders, Weeds and the risk from genetically manipulated organisms. Experimentia 49:219–224

    Article  Google Scholar 

  • Williamson M, Brown KC (1986) The analysis and modelling of British invasions. Phil Trans R Soc London B 314:505–522

    Article  ADS  Google Scholar 

  • Williamson M, Perrings J, Fitter A (1990) A releasing genetically engineered plants: present proposals and possible hazards. Trend Ecol Evol 5:417–419

    Article  Google Scholar 

  • Wilson BC (1990) Gene-pool reserves of Douglas fir. For Ecol Manag 35:121–130

    Article  Google Scholar 

  • Witt KA (2002) The landscape ecology of invasive spread. Conservation Biology 16:1192–1203

    Article  Google Scholar 

  • Won H, Renner S (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Nat Acad Sc 100:10824–10829

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Gartland (University of Abertay, Scotland) and reviewers for critical reading and their helpful comments on the manuscript, and J. Buschbom (BFH, Institute for Forest Genetics and Forest Tree Breeding) for correcting the English style. The authors apologize to colleagues whose relevant work has not been mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Fladung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoenicka, H., Fladung, M. Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20, 131–144 (2006). https://doi.org/10.1007/s00468-005-0023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-005-0023-5

Keywords

Navigation