Skip to main content

Advertisement

Log in

Technical requirements and devices available for long-term hemodialysis in children—mind the gap!

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Children requiring long-term kidney replacement therapy are a “rare disease” cohort. While the basic technical requirements for hemodialysis (HD) are similar in children and adults, key aspects of the child’s cardiovascular anatomy and hemodynamic specifications must be considered. In this article, we describe the technical requirements for long-term HD therapy for children and the devices that are currently available around the world. We highlight the characteristics and major technical shortcomings of permanent central venous catheters, dialyzers, dialysis machines, and software available to clinicians who care for children. We show that currently available HD machines are not equipped with appropriately small circuits and sensitive control mechanisms to perform safe and effective HD in the youngest patients. Manufacturers limit their liability, and health regulatory agencies permit the use of devices, only in children according to the manufacturers’ pre-specified weight limitations. Although registries show that 6–23% of children starting long-term HD weigh less than 15 kg, currently, there is only one long-term HD device that is cleared for use in children weighing 10 to 15 kg and none is available and labelled for use in children weighing less than 10 kg anywhere in the world. Thus, many children are being treated “off-label” and are subject to interventions delivered by medical devices that lack pediatric safety and efficacy data. Moreover, recent improvements in dialysis technology offered to adult patients are denied to most children. We, in turn, advocate for concerted action by pediatric nephrologists, industry, and health regulatory agencies to increase the development of dedicated HD machines and equipment for children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fine RN, De Palma JR, Lieberman E et al (1968) Extended hemodialysis in children with chronic renal failure. J Pediatr 73:706–713. https://doi.org/10.1016/S0022-3476(68)80176-3

    Article  CAS  PubMed  Google Scholar 

  2. Broyer M, Loirat C, Kleinknecht C (1972) Technical aspects and results of regular hemodialysis in children. Acta Paediatr 61:677–684. https://doi.org/10.1111/j.1651-2227.1972.tb15966.x

    Article  CAS  Google Scholar 

  3. Agence de la Biomédecine (2019) Rapport 2019. https://www.agence-biomedecine.fr/IMG/pdf/rapport_rein_2019_2021-10-14.pdf. Accessed 5 July 2023

    Google Scholar 

  4. Bonthuis M, Vidal E, Bjerre A et al (2021) Ten-year trends in epidemiology and outcomes of pediatric kidney replacement therapy in Europe: data from the ESPN/ERA-EDTA Registry. Pediatr Nephrol 36:2337–2348. https://doi.org/10.1007/s00467-021-04928-w

    Article  PubMed  PubMed Central  Google Scholar 

  5. United States Renal Data System (2021) USRDS Annual Data Report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD https://adr.usrds.org/2021. Accessed 25 July 2022

    Google Scholar 

  6. International pediatric dialysis Network. http://www.pedpd.org/. Accessed 11 September 2022

  7. Shroff R, Calder F, Bakkaloğlu S et al (2019) Vascular access in children requiring maintenance haemodialysis: a consensus document by the European Society for Paediatric Nephrology Dialysis Working Group. Nephrol Dial Transplant 34:1746–1765. https://doi.org/10.1093/ndt/gfz011

    Article  PubMed  Google Scholar 

  8. Borzych-Duzalka D, Shroff R, Ariceta G et al (2019) Vascular access choice, complications, and outcomes in children on maintenance hemodialysis: findings from the International Pediatric Hemodialysis Network (IPHN) Registry. Am J Kidney Dis 74:193–202. https://doi.org/10.1053/j.ajkd.2019.02.014

    Article  PubMed  Google Scholar 

  9. Lok CE, Huber TS, Lee T et al (2020) KDOQI clinical practice guideline for vascular access: 2019 update. Am J Kidney Dis 75:S1–S164. https://doi.org/10.1053/j.ajkd.2019.12.001

    Article  PubMed  Google Scholar 

  10. United States Renal Data System (2022) USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD https://adr.usrds.org/2022. Accessed 5 July 2023

    Google Scholar 

  11. Bruno C, Moumneh R, Sauvage E, Stronach L, Waters K, Simcock I, Arthurs O, Schievano S, Capelli C, Shroff R (2022) Central venous catheter malfunction in children: a bioengineering approach. Clin J Am Soc Nephrol 17:1382–1384. https://doi.org/10.2215/CJN.01470222

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bruno C, Sauvage E, Simcock I et al (2022) Computational investigation of the haemodynamics shows criticalities of central venous lines used for chronic haemodialysis in children. Front Pediatr 10:1055212. https://doi.org/10.3389/fped.2022.1055212

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fischbach M, Edefonti A, Schröder C et al (2005) Hemodialysis in children: general practical guidelines. Pediatr Nephrol 20:1054–1066. https://doi.org/10.1007/s00467-005-1876-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leffell MS, Kim D, Vega RM et al (2014) Red blood cell transfusions and the risk of allosensitization in patients awaiting primary kidney transplantation. Transplantation 97:525–533. https://doi.org/10.1097/01.tp.0000437435.19980.8f

    Article  CAS  PubMed  Google Scholar 

  15. Raina R, Lam S, Raheja H et al (2019) Pediatric intradialytic hypotension: recommendations from the Pediatric Continuous Renal Replacement Therapy (PCRRT) Workgroup. Pediatr Nephrol 34:925–941. https://doi.org/10.1007/s00467-018-4190-1

    Article  PubMed  Google Scholar 

  16. Hothi DK, Rees L, Marek J et al (2009) Pediatric myocardial stunning underscores the cardiac toxicity of conventional hemodialysis treatments. Clin J Am Soc Nephrol 4:790–797. https://doi.org/10.2215/CJN.05921108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Idrovo A, Pignatelli R, Loar R et al (2021) Preserved cerebral oxygenation with worsening global myocardial strain during pediatric chronic hemodialysis. J Am Soc Nephrol 32:2912–2919. https://doi.org/10.1681/ASN.2021020193

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anazodo UC, Wong DY, Théberge J et al (2023) Hemodialysis-related acute brain injury demonstrated by application of intradialytic magnetic resonance imaging and spectroscopy. J Am Soc Nephrol 34:1090–1104. https://doi.org/10.1681/ASN.0000000000000105

    Article  PubMed  Google Scholar 

  19. Peters SAE, Bots ML, Canaud B et al (2016) Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol Dial Transplant 31:978–984. https://doi.org/10.1093/ndt/gfv349

    Article  PubMed  Google Scholar 

  20. Shroff R, Smith C, Ranchin B et al (2019) Effects of hemodiafiltration versus conventional hemodialysis in children with ESKD: the HDF, heart and height study. J Am Soc Nephrol 30:678–691. https://doi.org/10.1681/ASN.2018100990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blankestijn PJ, Vernooij RWM, Hockham C et al (2023) Effect of hemodiafiltration or hemodialysis on mortality in kidney failure. N Engl J Med 389:700–709. https://doi.org/10.1056/NEJMoa2304820

    Article  CAS  PubMed  Google Scholar 

  22. Shroff R, Basile C, Van Der Sande F et al (2023) Haemodiafiltration for all: are we CONVINCEd? Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfad136

  23. Ronco C, Marchionna N, Brendolan A et al (2018) Expanded haemodialysis: from operational mechanism to clinical results. Nephrol Dial Transplant 33:iii41–iii47. https://doi.org/10.1093/ndt/gfy202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. García-Prieto A, De La Flor JC, Coll E et al (2023) Expanded hemodialysis: what’s up, Doc? Clin Kidney J 16:1071–1080. https://doi.org/10.1093/ckj/sfad033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ağbaş A, Canpolat N, Çalışkan S et al (2018) Hemodiafiltration is associated with reduced inflammation, oxidative stress and improved endothelial risk profile compared to high-flux hemodialysis in children. PLoS One 13:e0198320. https://doi.org/10.1371/journal.pone.0198320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fadel FI, Makar SH, Zekri H, Ahmed DH, Aon AH (2015) The effect of on-line hemodiafiltration on improving the cardiovascular function parameters in children on regular dialysis. Saudi J Kidney Dis Transpl 26:39–46. https://doi.org/10.4103/1319-2442.148731

    Article  PubMed  Google Scholar 

  27. Maduell F, Broseta JJ, Rodríguez-Espinosa D et al (2022) Comparison of four medium cut-off dialyzers. Clin Kidney J 15:2292–2299. https://doi.org/10.1093/ckj/sfac167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martínez-Miguel P, Gimena Muñoz R, Barrionuevo González M et al (2023) Comparison of 2 medium cutoff dialyzers versus on-line hemodiafiltration regarding depurative ability and albumin loss: an uncontrolled clinical research. Artif Organs 47:589–594. https://doi.org/10.1111/aor.14466

    Article  CAS  PubMed  Google Scholar 

  29. Morgenstern BZ, Wühl E, Nair KS et al (2006) Anthropometric prediction of total body water in children who are on pediatric peritoneal dialysis. J Am Soc Nephrol 17:285–293. https://doi.org/10.1681/ASN.2005050568

    Article  PubMed  Google Scholar 

  30. Zaloszyc A, Fischbach M, Schaefer B et al (2016) Body composition monitoring-derived urea distribution volume in children on chronic hemodialysis. Pediatr Nephrol 31:991–999. https://doi.org/10.1007/s00467-015-3283-3

    Article  PubMed  Google Scholar 

  31. Preciado P, Zhang H, Thijssen S et al (2019) All-cause mortality in relation to changes in relative blood volume during hemodialysis. Nephrol Dial Transplant 34:1401–1408. https://doi.org/10.1093/ndt/gfy286

    Article  CAS  PubMed  Google Scholar 

  32. Flythe JE, Chang TI, Gallagher MP et al (2020) Blood pressure and volume management in dialysis: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 97:861–876. https://doi.org/10.1016/j.kint.2020.01.046

    Article  PubMed  PubMed Central  Google Scholar 

  33. Geer JJ, Shah S, Williams E et al (2017) Faster rate of blood volume change in pediatric hemodialysis patients impairs cardiac index. Pediatr Nephrol 32:341–345. https://doi.org/10.1007/s00467-016-3486-2

    Article  PubMed  Google Scholar 

  34. Paglialonga F, Consolo S, Edefonti A, Montini G (2018) The first hour refill index: a promising marker of volume overload in children and young adults on chronic hemodialysis. Pediatr Nephrol 33:1209–1214. https://doi.org/10.1007/s00467-018-3915-5

    Article  PubMed  Google Scholar 

  35. Garzoni D, Keusch G, Kleinoeder T et al (2007) Reduced complications during hemodialysis by automatic blood volume controlled ultrafiltration. Int J Artif Organs 30:16–24. https://doi.org/10.1177/039139880703000104

    Article  CAS  PubMed  Google Scholar 

  36. Patel HP, Goldstein SL, Mahan JD et al (2007) A standard, noninvasive monitoring of hematocrit algorithm improves blood pressure control in pediatric hemodialysis patients. Clin J Am Soc Nephrol 2:252–257. https://doi.org/10.2215/CJN.02410706

    Article  PubMed  Google Scholar 

  37. Fadel FI, Makar SH, Eskander AE, Aon AH (2014) Decreasing intra-dialytic morbid events and assessment of dry weight in children on chronic hemodialysis using non-invasive changes in hematocrit. Saudi J Kidney Dis Transpl 25:1030–1037. https://doi.org/10.4103/1319-2442.139916

    Article  PubMed  Google Scholar 

  38. Maggiore Q, Pizzarelli F, Santoro A et al (2002) The effects of control of thermal balance on vascular stability in hemodialysis patients: results of the European randomized clinical trial. Am J Kidney Dis 40:280–290. https://doi.org/10.1053/ajkd.2002.34506

    Article  PubMed  Google Scholar 

  39. Tsujimoto Y, Tsujimoto H, Nakata Y et al (2019) Dialysate temperature reduction for intradialytic hypotension for people with chronic kidney disease requiring haemodialysis. Cochrane Database Syst Rev 7:CD012598. https://doi.org/10.1002/14651858.CD012598.pub2

    Article  PubMed  Google Scholar 

  40. Garg AX, Al-Jaishi AA, Dixon SN et al (2022) Personalised cooler dialysate for patients receiving maintenance haemodialysis (MyTEMP): a pragmatic, cluster-randomised trial. Lancet 400:1693–1703. https://doi.org/10.1016/S0140-6736(22)01805-0

    Article  Google Scholar 

  41. Badr B, Bories P, Marais R et al (2014) Transonic, thermodilution, or ionic dialysance to manage vascular access: which method is best?: Managing vascular access. Hemodial Int 18:127–135. https://doi.org/10.1111/hdi.12092

    Article  PubMed  Google Scholar 

  42. Schneditz D (1999) Validation of haemodialysis recirculation and access blood flow measured by thermodilution. Nephrol Dial Transplant 14:376–383. https://doi.org/10.1093/ndt/14.2.376

    Article  CAS  PubMed  Google Scholar 

  43. Karava V, Kwon T, Franco G et al (2019) Ultrasound dilution and thermodilution versus color Doppler ultrasound for arteriovenous fistula assessment in children on hemodialysis. Pediatr Nephrol 34:2381–2387. https://doi.org/10.1007/s00467-019-04297-5

    Article  PubMed  Google Scholar 

  44. Ságová M, Wojke R, Maierhofer A et al (2019) Automated individualization of dialysate sodium concentration reduces intradialytic plasma sodium changes in hemodialysis. Artif Organs 43:1002–1013. https://doi.org/10.1111/aor.13463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez A, Morena M, Bargnoux A et al (2021) Quantitative assessment of sodium mass removal using ionic dialysance and sodium gradient as a proxy tool: comparison of high-flux hemodialysis versus online hemodiafiltration. Artif Organs 45:E280–E292. https://doi.org/10.1111/aor.13923

    Article  CAS  PubMed  Google Scholar 

  46. Maduell F, Broseta JJ, Rodríguez-Espinosa D et al (2023) Practical implementation and clinical benefits of the new automated dialysate sodium control biosensor. Clin Kidney J 16:859–867. https://doi.org/10.1093/ckj/sfad013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujisaki K, Joki N, Tanaka S et al (2021) Pre-dialysis hyponatremia and change in serum sodium concentration during a dialysis session are significant predictors of mortality in patients undergoing hemodialysis. Kidney Int Rep 6:342–350. https://doi.org/10.1016/j.ekir.2020.11.009

    Article  PubMed  Google Scholar 

  48. Locatelli F, Stefoni S, Petitclerc T et al (2012) Effect of a plasma sodium biofeedback system applied to HFR on the intradialytic cardiovascular stability. Results from a randomized controlled study. Nephrol Dial Transplant 27:3935–3942. https://doi.org/10.1093/ndt/gfs091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Petitclerc T, Mercadal L (2023) Automated adjustment of dialysate sodium by the hemodialysis monitor: Rationale, implementation, and clinical benefits. Semin Dial 36:184–192. https://doi.org/10.1111/sdi.13132

    Article  PubMed  Google Scholar 

  50. Mosca M, Kouajip-Mabou A, De Mul A et al (2023) Daily practice evaluation of the paediatric set of a next-generation long-term haemodialysis machine. Pediatr Nephrol 38:3863–3866. https://doi.org/10.1007/s00467-023-05943-9

    Article  PubMed  Google Scholar 

  51. Assimon MM, Wenger JB, Wang L, Flythe JE (2016) Ultrafiltration rate and mortality in maintenance hemodialysis patients. Am J Kidney Dis 68:911–922. https://doi.org/10.1053/j.ajkd.2016.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karava V, Benzouid C, Kwon T et al (2018) Interdialytic weight gain and vasculopathy in children on hemodialysis: a single center study. Pediatr Nephrol 33:2329–2336. https://doi.org/10.1007/s00467-018-4026-z

    Article  PubMed  Google Scholar 

  53. Paglialonga F, Consolo S, Galli MA et al (2015) Interdialytic weight gain in oligoanuric children and adolescents on chronic hemodialysis. Pediatr Nephrol 30:999–1005. https://doi.org/10.1007/s00467-014-3005-2

    Article  PubMed  Google Scholar 

  54. Ranchin B, Schmitt CP, Warady B et al (2023) Devices for long-term hemodialysis in small children—a plea for action. Kidney Int 103:1038–1040. https://doi.org/10.1016/j.kint.2023.03.018

    Article  PubMed  Google Scholar 

  55. Espinoza J, Shah P, Nagendra G et al (2022) Pediatric medical device development and regulation: current state, barriers, and opportunities. Pediatrics 149:e2021053390. https://doi.org/10.1542/peds.2021-053390

    Article  PubMed  Google Scholar 

  56. Bourgeois FT, Espinoza JC (2023) Advancing equity in medical device development for children. JAMA Pediatr 177:561–562. https://doi.org/10.1001/jamapediatrics.2023.0790

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the nurses on our teams for their knowledge of dialysis machines and their commitment to children’s care, the patients and their families for their trust, and the manufacturers’ representatives for their support in gathering information about the devices. We also gratefully acknowledge the following colleagues for help with data extraction: Marjolein Bonthuis for the ESPN/ERA registry, Kimberly Nieman for the USRDS registry, and Dagmara Borzych-Duzalka for the IPHN registry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Ranchin.

Ethics declarations

Conflict of interest

RS has received research grants from Fresenius Medical Care, speaker honoraria from Fresenius Medical Care and Amgen, and consulting fees from AstraZeneca and Humacyte. CPS has received consulting fees from Baxter, Iperboreal, and Stadapharma; speaker honoraria from Fresenius Medical Care; and research grants from Baxter and Invizius. The other authors do not declare any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranchin, B., Schmitt, C.P., Warady, B.A. et al. Technical requirements and devices available for long-term hemodialysis in children—mind the gap!. Pediatr Nephrol (2023). https://doi.org/10.1007/s00467-023-06233-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00467-023-06233-0

Keywords

Navigation