Skip to main content
Log in

Whole exome sequencing identifies monogenic forms of nephritis in a previously unsolved cohort of children with steroid-resistant nephrotic syndrome and hematuria

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Alport syndrome (AS), atypical hemolytic-uremic syndrome (aHUS), and fibronectin-glomerulopathy (FG) are rare forms of glomerular diseases that manifest in a combination of proteinuria, hematuria, and hypertension, referred to as nephritic syndrome. Due to phenotypic overlays, steroid-resistant nephrotic syndrome (SRNS) and nephritic syndrome have been difficult to discern diagnostically. SRNS is more common than nephritic syndrome and is the second leading cause of childhood-onset CKD. Fourteen monogenic causes of AS, aHUS, and FG and 60 monogenic causes of SRNS have been identified. As whole exome sequencing (WES) allows for unequivocal molecular genetic diagnostics, we hypothesize to be able to identify causative mutations in genes known to cause nephritic syndrome in patient cohorts with a clinical diagnosis of SRNS.

Methods

We identified patients with hematuria and steroid-resistant proteinuria in an international patient cohort that we had submitted to WES and who were unsolved for known monogenic causes of SRNS. These 70 patients from 65 individual families were subsequently analyzed for causative mutations in 14 AS, aHUS, or FG causing genes. WES data were compared to a control cohort of 76 patients from 75 families that were diagnosed with nephronophthisis-related ciliopathies (NPHP-RC) and to a control cohort of 83 individuals from 75 families with SRNS, but without hematuria.

Results

We detected likely pathogenic genetic variants in 3 of 65 families (4.6%) in 2 of the 14 genes analyzed.

Conclusions

We confirmed that in cohorts of childhood-onset SRNS, patients with nephritic syndrome can be discerned by WES. The findings highlight the importance of clinical genetic testing for therapeutic and preventative measures in patients with proteinuria.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data will be shared on reasonable request made to the corresponding author.

References

  1. Kopp JB, Anders HJ, Susztak K et al (2020) Podocytopathies. Nat Rev Dis Primers 6:1–24. https://doi.org/10.1038/s41572-020-0196-7

    Article  Google Scholar 

  2. Lovric S, Ashraf S, Tan W, Hildebrandt F (2016) Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 31:1802–1813. https://doi.org/10.1093/ndt/gfv355

    Article  CAS  PubMed  Google Scholar 

  3. Lamba P, Nam KH, Contractor J, Kim A (2020) Nephritic syndrome. Prim Care 47:615–629. https://doi.org/10.1016/j.pop.2020.08.003

    Article  PubMed  Google Scholar 

  4. Nozu K, Nakanishi K, Abe Y et al (2019) A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 23:158–168. https://doi.org/10.1007/s10157-018-1629-4

    Article  PubMed  Google Scholar 

  5. Lemmink HH, Mochizuki T, van den Heuvel LP et al (1994) Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum Mol Genet 3:1269–1273

    Article  CAS  Google Scholar 

  6. Mochizuki T, Lemmink HH, Mariyama M et al (1994) Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet 8:77–81. https://doi.org/10.1038/ng0994-77

    Article  CAS  PubMed  Google Scholar 

  7. Antignac C, Knebelmann B, Drouot L et al (1994) Deletions in the COL4A5 collagen gene in X-linked Alport syndrome. Characterization of the pathological transcripts in nonrenal cells and correlation with disease expression. J Clin Invest 93:1195–1207. https://doi.org/10.1172/JCI117073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Bockhaus J, Wang F et al (2021) Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome. Pediatr Nephrol 36:2719–2730. https://doi.org/10.1007/s00467-021-05040-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vivante A, Hildebrandt F (2016) Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 12:133–146. https://doi.org/10.1038/nrneph.2015.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lemaire M, Fremeaux-Bacchi V, Schaefer F et al (2013) Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 45:531–536. https://doi.org/10.1038/ng.2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neumann HP, Salzmann M, Bohnert-Iwan B et al (2003) Haemolytic uraemic syndrome and mutations of the factor H gene: a registry-based study of German speaking countries. J Med Genet 40:676–681

    Article  CAS  Google Scholar 

  12. Noris M, Caprioli J, Bresin E et al (2010) Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol 5:1844–1859. https://doi.org/10.2215/CJN.02210310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Westra D, Vernon KA, Volokhina EB, Pickering MC, van de Kar NC, van den Heuvel LP (2012) Atypical hemolytic uremic syndrome and genetic aberrations in the complement factor H-related 5 gene. J Hum Genet 57:459–464. https://doi.org/10.1038/jhg.2012.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA (2007) Contributions of the Transplant Registry: The 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant 11:366–373. https://doi.org/10.1111/j.1399-3046.2007.00704.x

    Article  PubMed  Google Scholar 

  15. Fakhouri F, Zuber J, Frémeaux-Bacchi V, Loirat C (2017) Haemolytic uraemic syndrome. Lancet 390:681–696. https://doi.org/10.1016/s0140-6736(17)30062-4

    Article  PubMed  Google Scholar 

  16. Nakapoulou I, Stefanaki K, Zeis PM et al (1993) The glomerular distribution of laminin and fibronectin in glomerulonephritis. Histol Histopathol 8:521–526

    CAS  PubMed  Google Scholar 

  17. Castelletti F, Donadelli R, Banterla F et al (2008) Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci U S A 105:2538–2543. https://doi.org/10.1073/pnas.0707730105

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schapiro D, Daga A, Lawson JA et al (2019) Panel sequencing distinguishes monogenic forms of nephritis from nephrosis in children. Nephrol Dial Transplant 34:474–485. https://doi.org/10.1093/ndt/gfy050

    Article  CAS  PubMed  Google Scholar 

  19. Connaughton DM, Kennedy C, Shril S et al (2019) Monogenic causes of chronic kidney disease in adults. Kidney Int 95:914–928. https://doi.org/10.1016/j.kint.2018.10.031

    Article  PubMed  PubMed Central  Google Scholar 

  20. Warejko JK, Tan W, Daga A et al (2018) Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13:53–62. https://doi.org/10.2215/cjn.04120417

    Article  CAS  PubMed  Google Scholar 

  21. Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braun DA, Sadowski CE, Kohl S et al (2016) Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet 48:457–465. https://doi.org/10.1038/ng.3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Ven AT, Connaughton DM, Ityel H et al (2018) Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 29:2348–2361. https://doi.org/10.1681/asn.2017121265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hildebrandt F, Heeringa SF, Ruschendorf F et al (2009) A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet 5:e1000353. https://doi.org/10.1371/journal.pgen.1000353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sayer JA, Otto EA, O’Toole JF et al (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38:674–681

    Article  CAS  Google Scholar 

  26. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452-457. https://doi.org/10.1093/nar/gks539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  28. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stenson PD, Mort M, Ball EV et al (2020) The Human Gene Mutation Database (HGMD(®)): optimizing its use in a clinical diagnostic or research setting. Hum Genet 139:1197–1207. https://doi.org/10.1007/s00439-020-02199-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Landrum MJ, Chitipiralla S, Brown GR et al (2020) ClinVar: improvements to accessing data. Nucleic Acids Res 48:D835–D844. https://doi.org/10.1093/nar/gkz972

    Article  CAS  PubMed  Google Scholar 

  32. Yates AD, Achuthan P, Akanni W et al (2020) Ensembl 2020. Nucleic Acids Res 48:D682–D688. https://doi.org/10.1093/nar/gkz966

    Article  CAS  PubMed  Google Scholar 

  33. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  34. Delvaeye M, Noris M, De Vriese A et al (2009) Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 361:345–357. https://doi.org/10.1056/NEJMoa0810739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edelsten AD, Tuck S (1978) Familial haemolytic uraemic syndrome. Arch Dis Child 53:255–256

    Article  CAS  Google Scholar 

  36. Fremeaux-Bacchi V, Dragon-Durey MA, Blouin J et al (2004) Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 41:e84

    Article  CAS  Google Scholar 

  37. Fremeaux-Bacchi V, Miller EC, Liszewski MK et al (2008) Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112:4948–4952. https://doi.org/10.1182/blood-2008-01-133702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gale DP, de Jorge EG, Cook HT et al (2010) Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 376:794–801. https://doi.org/10.1016/S0140-6736(10)60670-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levy GG, Nichols WC, Lian EC et al (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488–494. https://doi.org/10.1038/35097008

    Article  CAS  PubMed  Google Scholar 

  40. Noris M, Brioschi S, Caprioli J et al (2003) Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362:1542–1547. https://doi.org/10.1016/S0140-6736(03)14742-3

    Article  CAS  PubMed  Google Scholar 

  41. Venables JP, Strain L, Routledge D et al (2006) Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med 3:e431. https://doi.org/10.1371/journal.pmed.0030431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matthaiou A, Poulli T, Deltas C (2020) Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin Kidney J 13:1025–1036. https://doi.org/10.1093/ckj/sfz176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Torra R, Furlano M, Ars E (2020) How genomics reclassifies diseases: the case of Alport syndrome. Clin Kidney J 13:933–935. https://doi.org/10.1093/ckj/sfaa170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voskarides K, Damianou L, Neocleous V et al (2007) COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol 18:3004–3016. https://doi.org/10.1681/asn.2007040444

    Article  CAS  PubMed  Google Scholar 

  45. Jayasinghe K, Stark Z, Kerr PG et al (2021) Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet Med 23:183–191. https://doi.org/10.1038/s41436-020-00963-4

    Article  PubMed  Google Scholar 

  46. Pinto EVF, Kemppainen JL, Lieske JC, Harris PC, Hogan MC (2021) Establishing a nephrology genetic clinic. Kidney Int 100:254–259. https://doi.org/10.1016/j.kint.2021.05.008

    Article  Google Scholar 

Download references

Acknowledgements

We thank the participating families and the physicians for their contributions. F.H. is the William E. Harmon Professor of Pediatrics

Funding

This research was supported by grants from the National Institutes of Health (5R01DK076683-15 to FH).

Author information

Authors and Affiliations

Authors

Contributions

HX: analysis and interpretation of data, drafting of article; FH: conception and design of research work, drafting and revision of article.

Corresponding author

Correspondence to Friedhelm Hildebrandt.

Ethics declarations

Ethics approval

This study was approved by the institutional review boards of Boston Children’s Hospital and the University of Michigan. DNA samples were collected between 09/1996 and 04/2016 for the nephritis cohort, and between 09/2017 and 08/2019 for the NPHP-RC cohort, after obtaining written informed consent, clinical data, and pedigree information (www.renalgenes.org).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17.4 KB)

Supplementary file2 (PPTX 43.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Hildebrandt, F. Whole exome sequencing identifies monogenic forms of nephritis in a previously unsolved cohort of children with steroid-resistant nephrotic syndrome and hematuria. Pediatr Nephrol 37, 1567–1574 (2022). https://doi.org/10.1007/s00467-021-05312-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05312-4

Keywords

Navigation