Skip to main content

Advertisement

Log in

When should we start and stop ACEi/ARB in paediatric chronic kidney disease?

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Renin-angiotensin-aldosterone inhibitors (RAASi) are the mainstay therapy in both adult and paediatric chronic kidney disease (CKD). RAASi slow down the progression of kidney failure by optimization of blood pressure and reduction of proteinuria. Despite recommendations from published guidelines in adults, the evidence related to the use of RAASi is surprisingly scarce in children. Moreover, their role in advanced CKD remains controversial. Without much guidance from the literature, paediatric nephrologists may discontinue RAASi in patients with advanced CKD due to apparent worsening of kidney function, hyperkalaemia and hypotension. Current data suggest that this strategy may in fact lead to a more rapid decline in kidney function. The optimal approach in this clinical scenario is still not well defined and there are varying practices worldwide. We will in this review describe the existing evidence on the use of RAASi in CKD with particular focus on paediatric data. We will also address the use of RAASi in advanced CKD and discuss the potential benefits and harms. At the end, we will suggest a practical approach for the use of RAASi in children with CKD based on current state of knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Warady BA, Abraham AG, Schwartz GJ, Wong CS, Muñoz A, Betoko A, Mitsnefes M, Kaskel F, Greenbaum LA, Mak RH (2015) Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the chronic kidney disease in children (CKiD) cohort. Am J Kidney Dis 65:878–888

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fathallah-Shaykh SA, Flynn JT, Pierce CB, Abraham AG, Blydt-Hansen TD, Massengill SF, Moxey-Mims MM, Warady BA, Furth SL, Wong CS (2015) Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol 10:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shroff R, Aitkenhead H, Costa N, Trivelli A, Litwin M, Picca S, Anarat A, Sallay P, Ozaltin F, Zurowska A (2016) Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD. J Am Soc Nephrol 27:314–322

    Article  CAS  PubMed  Google Scholar 

  4. ESCAPE Trial Group (2009) Strict blood-pressure control and progression of renal failure in children. N Engl J Med 361:1639–1650

    Article  Google Scholar 

  5. Remuzzi A, Perticucci E, Ruggenenti P, Mosconi L, Limonta M, Remuzzi G (1991) Angiotensin converting enzyme inhibition improves glomerular size-selectivity in IgA nephropathy. Kidney Int 39:1267–1273

    Article  CAS  PubMed  Google Scholar 

  6. Wühl E, Schaefer F (2008) Therapeutic strategies to slow chronic kidney disease progression. Pediatr Nephrol 23:705–716

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kunz R, Friedrich C, Wolbers M, Mann JF (2008) Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin–angiotensin system on proteinuria in renal disease. Ann Intern Med 148:30–48

    Article  PubMed  Google Scholar 

  8. The GISEN Group (1997) Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349:1857–1863

    Article  Google Scholar 

  9. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, Maschio G, Brenner BM, Kamper A, Zucchelli P (2001) Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease: a meta-analysis of patient-level data. Ann Intern Med 135:73–87

    Article  CAS  PubMed  Google Scholar 

  10. Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, Ponticelli C, Ritz E, Zucchelli P (1996) Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 334:939–945

    Article  CAS  PubMed  Google Scholar 

  11. Kent DM, Jafar TH, Hayward RA, Tighiouart H, Landa M, De Jong P, De Zeeuw D, Remuzzi G, Kamper A-L, Levey AS (2007) Progression risk, urinary protein excretion, and treatment effects of angiotensin-converting enzyme inhibitors in nondiabetic kidney disease. J Am Soc Nephrol 18:1959–1965

    Article  CAS  PubMed  Google Scholar 

  12. Wright JT Jr, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, Cheek D, Douglas-Baltimore JG, Gassman J, Glassock R (2002) Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 288:2421–2431

    Article  CAS  PubMed  Google Scholar 

  13. Ruggenenti P, Perna A, Loriga G, Ganeva M, Ene-Iordache B, Turturro M, Lesti M, Perticucci E, Chakarski IN, Leonardis D (2005) Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet 365:939–946

    Article  PubMed  Google Scholar 

  14. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco AL, De Jong PE, Griffith KE, Hemmelgarn BR, Iseki K, Lamb EJ (2013) Kidney disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int (Suppl 3):1-150

  15. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK (2017) Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140:e20171904

    Article  PubMed  Google Scholar 

  16. Weir MR, Lakkis JI, Jaar B, Rocco MV, Choi MJ, Kramer HJ, Ku E (2018) Use of renin-angiotensin system blockade in advanced ckd: An NKF-KDOQI controversies report. Am J Kidney Dis 72:873–884

    Article  CAS  PubMed  Google Scholar 

  17. van den Belt SM, Heerspink HJ, Kirchner M, Gracchi V, Thurn-Valsassina D, Bayazit AK, Niemirska A, Canpolat N, Bulut IK, Azukaitis K (2020) Discontinuation of RAAS inhibition in children with advanced CKD. Clin J Am Soc Nephrol 15:625–632

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmed AK, Kamath NS, El Kossi M, El Nahas AM (2010) The impact of stopping inhibitors of the renin–angiotensin system in patients with advanced chronic kidney disease. Nephrol Dial Transplant 25:3977–3982

    Article  CAS  PubMed  Google Scholar 

  19. Ruggenenti P, Perna A, Remuzzi G (2001) ACE inhibitors to prevent end-stage renal disease: when to start and why possibly never to stop: a post hoc analysis of the REIN trial results. J Am Soc Nephrol 12:2832–2837

    Article  CAS  PubMed  Google Scholar 

  20. Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR, Jiang JP, Liang M, Wang GB, Liu ZR (2006) Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med 354:131–140

    Article  CAS  PubMed  Google Scholar 

  21. Hsu T-W, Liu J-S, Hung S-C, Kuo K-L, Chang Y-K, Chen Y-C, Hsu C-C, Tarng D-C (2014) Renoprotective effect of renin-angiotensin-aldosterone system blockade in patients with predialysis advanced chronic kidney disease, hypertension, and anemia. JAMA Intern Med 174:347–354

    Article  PubMed  CAS  Google Scholar 

  22. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 329:1456–1462

    Article  CAS  PubMed  Google Scholar 

  23. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860

    Article  CAS  PubMed  Google Scholar 

  24. Brenner BM, Cooper ME, De Zeeuw D, Keane WF, Mitch WE, Parving H-H, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    Article  CAS  PubMed  Google Scholar 

  25. Patel A, ADVANCE Collaborative Group, MacMahon S, Chalmers J, Neal B, Woodward M, Billot L, Harrap S, Poulter N, Marre M, Cooper M, Glasziou P, Grobbee DE, Hamet P, Heller S, Liu LS, Mancia G, Mogensen CE, Pan CY, Rodgers A, Williams B (2007) Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370:829–840

    Article  CAS  Google Scholar 

  26. Fink HA, Ishani A, Taylor BC, Greer NL, MacDonald R, Rossini D, Sadiq S, Lankireddy S, Kane RL, Wilt TJ (2012) Screening for, monitoring, and treatment of chronic kidney disease stages 1 to 3: a systematic review for the US Preventive Services Task Force and for an American College of Physicians Clinical Practice Guideline. Ann Intern Med 156:570–581

    Article  PubMed  Google Scholar 

  27. Parving H-H, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345:870–878

    Article  CAS  PubMed  Google Scholar 

  28. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, King AJ, Klahr S, Massry SG, Seifter JL (1995) Blood pressure control, proteinuria, and the progression of renal disease: the Modification of Diet in Renal Disease Study. Ann Intern Med 123:754–762

    Article  CAS  PubMed  Google Scholar 

  29. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, De Jong PE, De Zeeuw D, Shahinfar S, Toto R, Levey AS (2003) Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 139:244–252

    Article  CAS  PubMed  Google Scholar 

  30. Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, Scolari F, Schena FP, Remuzzi G (1999) Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 354:359–364

    Article  CAS  PubMed  Google Scholar 

  31. Lea J, Greene T, Hebert L, Lipkowitz M, Massry S, Middleton J, Rostand SG, Miller E, Smith W, Bakris GL (2005) The relationship between magnitude of proteinuria reduction and risk of end-stage renal disease: results of the African American study of kidney disease and hypertension. Arch Intern Med 165:947–953

    Article  PubMed  Google Scholar 

  32. Ruggenenti P, Perna A, Gherardi G, Gaspari F, Benini R, Remuzzi G (1998) Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril Efficacy in Nephropathy. Lancet 352:1252–1256

    Article  CAS  PubMed  Google Scholar 

  33. Ruggenenti P, Perna A, Benini R, Bertani T, Zoccali C, Maggiore Q, Salvadori M, Remuzzi G (1999) In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. J Am Soc Nephrol 10:997–1006

    Article  CAS  PubMed  Google Scholar 

  34. Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP, Charleston J, Cheek D, Cleveland W, Douglas JG (2001) Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA 285:2719–2728

    Article  CAS  PubMed  Google Scholar 

  35. Ng DK, Moxey-Mims M, Warady BA, Furth SL, Muñoz A (2016) Racial differences in renal replacement therapy initiation among children with a nonglomerular cause of chronic kidney disease. Ann Epidimiol 26:780–787.e781

    Article  Google Scholar 

  36. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, Wang X, Maggioni A, Budaj A, Chaithiraphan S (2008) Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372:547–553

    Article  CAS  PubMed  Google Scholar 

  37. Tobe SW, Clase CM, Gao P, McQueen M, Grosshennig A, Wang X, Teo KK, Yusuf S, Mann JF (2011) Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation 123:1098–11073

    Article  CAS  PubMed  Google Scholar 

  38. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, Leehey DJ, McCullough PA, O'Connor T, Palevsky PM (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369:1892–1903

    Article  CAS  PubMed  Google Scholar 

  39. Wong CS, Pierce CB, Cole SR, Warady BA, Mak RH, Benador NM, Kaskel F, Furth SL, Schwartz GJ (2009) Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol 4:812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Metcalfe W (2007) How does early chronic kidney disease progress? A background paper prepared for the UK Consensus Conference on early chronic kidney disease. Nephrol Dial Transplant 22(suppl_9):ix26–ix30

    PubMed  Google Scholar 

  41. Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, Warady BA (2008) Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension 52:631–637

    Article  CAS  PubMed  Google Scholar 

  42. Mitsnefes M, Flynn J, Cohn S, Samuels J, Blydt-Hansen T, Saland J, Kimball T, Furth S, Warady B, CKiD Study Group (2010) Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol 21:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barletta G-M, Pierce C, Mitsnefes M, Samuels J, Warady BA, Furth S, Flynn J (2018) Is blood pressure improving in children with chronic kidney disease? A period analysis. Hypertension 71:444–450

    Article  CAS  PubMed  Google Scholar 

  44. Samuels J, Ng D, Flynn JT, Mitsnefes M, Poffenbarger T, Warady BA, Furth S (2012) Ambulatory blood pressure patterns in children with chronic kidney disease. Hypertension 60:43–50

    Article  CAS  PubMed  Google Scholar 

  45. Kogon AJ, Pierce CB, Cox C, Brady TM, Mitsnefes MM, Warady BA, Furth SL, Flynn JT (2014) Nephrotic-range proteinuria is strongly associated with poor blood pressure control in pediatric chronic kidney disease. Kidney Int 85:938–944

    Article  PubMed  Google Scholar 

  46. Abraham AG, Betoko A, Fadrowski JJ, Pierce C, Furth SL, Warady BA, Muñoz A (2017) Renin–angiotensin II–aldosterone system blockers and time to renal replacement therapy in children with CKD. Pediatr Nephrol 32:643–649

    Article  PubMed  Google Scholar 

  47. van den Belt SM, Heerspink HJ, Gracchi V, de Zeeuw D, Wühl E, Schaefer F, ESCAPE Trial Group (2018) Early proteinuria lowering by angiotensin-converting enzyme inhibition predicts renal survival in children with CKD. J Am Soc Nephrol 29:2225–2233

    Article  PubMed  PubMed Central  Google Scholar 

  48. Snauwaert E, Walle JV, De Bruyne P (2017) Therapeutic efficacy and safety of ACE inhibitors in the hypertensive paediatric population: a review. Arch Dis Child 102:63–71

    Article  PubMed  Google Scholar 

  49. Ku LC, Zimmerman K, Benjamin DK, Clark RH, Hornik CP, Smith PB (2017) Safety of Enalapril in infants admitted to the neonatal intensive care unit. Pediatr Cardiol 38:155–161

    Article  PubMed  Google Scholar 

  50. Tack ED, Perlman JM (1988) Renal failure in sick hypertensive premature infants receiving captopril therapy. J Pediatr 112:805–810

    Article  CAS  PubMed  Google Scholar 

  51. Tufro-McReddie A, Romano L, Harris J, Ferder L, Gomez R (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Phys 269:F110–F115

    Article  CAS  Google Scholar 

  52. Frölich S, Slattery P, Thomas D, Goren I, Ferreiros N, Jensen BL, Nüsing RM (2017) Angiotensin II-AT1–receptor signaling is necessary for cyclooxygenase-2–dependent postnatal nephron generation. Kidney Int 91:818–829

    Article  PubMed  CAS  Google Scholar 

  53. Starr MC, Flynn JT (2019) Neonatal hypertension: cases, causes, and clinical approach. Pediatr Nephrol 34:787–799

    Article  PubMed  Google Scholar 

  54. Becker GJ, Wheeler DC, De Zeeuw D, Fujita T, Furth SL, Holdaas H, Mendis S, Oparil S, Perkovic V, Rodrigues CIS (2012) Kidney disease: improving global outcomes (KDIGO) blood pressure work group. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int Suppl 2:337–414

    Article  Google Scholar 

  55. Jovanovich AJ, Chonchol MB, Sobhi A, Kendrick JB, Cheung AK, Kaufman JS, Smits G, Jablonski KL, HOST Investigators (2015) Mineral metabolites, angiotensin II inhibition and outcomes in advanced chronic kidney disease. Am J Kidney Dis 42:361–368

    CAS  Google Scholar 

  56. Oh YJ, Kim SM, Shin BC, Kim HL, Chung JH, Kim AJ, Ro H, Chang JH, Lee HH, Chung W (2017) The impact of renin-angiotensin system blockade on renal outcomes and mortality in pre-dialysis patients with advanced chronic kidney disease. PLoS One 12:e0170874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Pita-Fernández S, Chouciño-Fernández T, Juega-Puig J, Seoane-Pillado T, López-Calviño B, Pértega-Díaz S, Pedreira-Andrade JD, Gil-Guillén V (2014) A randomized clinical trial to determine the effect of angiotensin inhibitors reduction on creatinine clearance and haemoglobin in heart failure patients with chronic kidney disease and anaemia. Int J Clin Pract 68:1231–1238

    Article  PubMed  CAS  Google Scholar 

  58. Onuigbo M, Onuigbo N (2008) Worsening renal failure in older chronic kidney disease patients with renal artery stenosis concurrently on renin angiotensin aldosterone system blockade: a prospective 50-month Mayo-Health-System clinic analysis. QJM 101:519–527

    Article  CAS  PubMed  Google Scholar 

  59. Bhandari S, Ives N, Brettell EA, Valente M, Cockwell P, Topham PS, Cleland JG, Khwaja A, El Nahas M (2016) Multicentre randomized controlled trial of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker withdrawal in advanced renal disease: the STOP-ACEi trial. Nephrol Dial Transplant 31:255–261

    Article  CAS  PubMed  Google Scholar 

  60. Querfeld U, Anarat A, Bayazit AK, Bakkaloglu AS, Bilginer Y, Caliskan S, Civilibal M, Doyon A, Duzova A, Kracht D (2010) The Cardiovascular Comorbidity in Children with Chronic Kidney Disease (4C) study: objectives, design, and methodology. Clin J Am Soc Nephrol 5:1642–1648

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kidney Disease Outcomes Quality Initiative (2004) K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 43(5 Suppl 1):S1-290

  62. Clase CM, Barzilay J, Gao P, Smyth A, Schmieder RE, Tobe S, Teo KK, Yusuf S, Mann JF (2017) Acute change in glomerular filtration rate with inhibition of the renin-angiotensin system does not predict subsequent renal and cardiovascular outcomes. Kidney Int 91:683–690

    Article  CAS  PubMed  Google Scholar 

  63. Bakris GL, Weir MR (2000) Angiotensin-converting enzyme inhibitor–associated elevations in serum creatinine: is this a cause for concern? Arch Intern Med 160:685–693

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt M, Mansfield KE, Bhaskaran K, Nitsch D, Sørensen HT, Smeeth L, Tomlinson LA (2017) Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: cohort study. BMJ 356:j791

    Article  PubMed  PubMed Central  Google Scholar 

  65. Holtkamp FA, De Zeeuw D, Thomas MC, Cooper ME, De Graeff PA, Hillege HJ, Parving H-H, Brenner BM, Shahinfar S, Heerspink HJL (2011) An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int 80:282–287

    Article  CAS  PubMed  Google Scholar 

  66. Tullus K (2011) Safety concerns of angiotensin II receptor blockers in preschool children. Arch Dis Child 96:881–882

    Article  PubMed  Google Scholar 

  67. Hou FF, Xie D, Zhang X, Chen PY, Zhang WR, Liang M, Guo ZJ, Jiang JP (2007) Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. J Am Soc Nephrol 18:1889–1898

    Article  CAS  PubMed  Google Scholar 

  68. Pham AQT, Xu LHR, Moe OW (2015) Drug-induced metabolic acidosis. F1000Res 4:F1000

    Article  PubMed  PubMed Central  Google Scholar 

  69. Frimodt-Møller M, Høj Nielsen A, Strandgaard S, Kamper A-L (2010) Feasibility of combined treatment with enalapril and candesartan in advanced chronic kidney disease. Nephrol Dial Transplant 25:842–847

    Article  PubMed  CAS  Google Scholar 

  70. ONTARGET Investigators (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358:1547–1559

    Article  Google Scholar 

  71. Hansen HP, Rossing P, Tarnow L, Nielsen FS, Jensen BR, Parving H-H (1995) Increased glomerular filtration rate after withdrawal of long-term antihypertensive treatment in diabetic nephropathy. Kidney Int 47:1726–1731

    Article  CAS  PubMed  Google Scholar 

  72. (FDA) FDA New Pediatric Labeling Information Database. https://www.accessdata.fda.gov/scripts/sda/sdNavigation.cfm?sd=labelingdatabase

Download references

Acknowledgements

The authors would like to thank Ms. Fiona Lai and Ms. Serena Wong for preparing the summary table on licensed use of RAASi in the paediatric population.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Yu-hin Chan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers

1. C; 2. B; 3. A; 4.D

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, E.Yh., Ma, A.Lt. & Tullus, K. When should we start and stop ACEi/ARB in paediatric chronic kidney disease?. Pediatr Nephrol 36, 1751–1764 (2021). https://doi.org/10.1007/s00467-020-04788-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04788-w

Keywords

Navigation