Skip to main content
Log in

Transforming growth factor beta signaling functions during mammalian kidney development

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Aberrant transforming growth factor beta (TGFβ) signaling during embryogenesis is implicated in severe congenital abnormalities, including kidney malformations. However, the molecular mechanisms that underlie congenital kidney malformations related to TGFβ signaling remain poorly understood. Here, we review current understanding of the lineage-specific roles of TGFβ signaling during kidney development and how dysregulation of TGFβ signaling contributes to the pathogenesis of kidney malformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scott RP, Quaggin SE (2015) The cell biology of renal filtration. J Cell Biol 209:199–210

    CAS  PubMed  PubMed Central  Google Scholar 

  2. McMahon AP (2016) Development of the mammalian kidney. Curr Top Dev Biol 117:31–64

    PubMed  PubMed Central  Google Scholar 

  3. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    CAS  PubMed  Google Scholar 

  4. Takasato M, Little MH (2015) The origin of the mammalian kidney: Implications for recreating the kidney in vitro. Dev 142:1937–1947

    CAS  Google Scholar 

  5. Little MH, Combes AN, Takasato M (2016) Understanding kidney morphogenesis to guide renal tissue regeneration. Nat Rev Nephrol 12:624–635

    CAS  PubMed  Google Scholar 

  6. Blake J, Rosenblum ND (2014) Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol 36:2–12

    PubMed  Google Scholar 

  7. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Reports 3:650–662

    CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Brien LL, McMahon AP (2014) Induction and patterning of the metanephric nephron. Semin Cell Dev Biol 36:31–38

    PubMed  Google Scholar 

  12. Li W, Hartwig S, Rosenblum ND (2014) Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn 243:853–863

    PubMed  Google Scholar 

  13. Descargues P, Sil AK, Sano Y, Korchynskyi O, Han G, Owens P, Wang XJ, Karin M (2008) IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci U S A 105:2487–2492

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Muraoka RS, Dumont N, Ritterr CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL (2002) Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomlinson DC, Freestone SH, Grace OC, Thomson AA (2004) Differential effects of transforming growth factor-β1 on cellular proliferation in the developing prostate. Endocrinology 145:4292–4300

    CAS  PubMed  Google Scholar 

  16. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. Development 121:1845–1854

    CAS  PubMed  Google Scholar 

  17. Oshima M, Oshima H, Taketo MM (1996) TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302

    CAS  PubMed  Google Scholar 

  18. Azhar M, Schultz JEJ, Grupp I, Dorn GW II, Meneton P, Molin DGM, Gittenberger-de Groot AC, Doetschman T (2003) Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 14:391–407

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shull MM, Ormsby I, Kier AB, Kier AB, Pawlowskr S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvint D, Annunziata N, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693–699

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Oxburgh L, Chu GC, Michael SK, Robertson EJ (2004) TGFβ superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population. Development 131:4593–4605

    CAS  PubMed  Google Scholar 

  22. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 124:2659–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK (2004) TGF-β superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266:285–298

    CAS  PubMed  Google Scholar 

  24. Walker KA, Sims-Lucas S, Caruana G, Cullen-McEwen L, Li J, Sarraj MA, Bertram JF, Stenvers KL (2011) Betaglycan is required for the establishment of nephron endowment in the mouse. PLoS One 6:e18723

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    CAS  PubMed  Google Scholar 

  26. Letarte M, McDonald ML, Li C, Kathirkamathamby K, Vera S, Pece-Barbara N, Kumar S (2005) Reduced endothelial secretion and plasma levels of transforming growth factor-β1 in patients with hereditary hemorrhagic telangiectasia type 1. Cardiovasc Res 68:155–164

    CAS  PubMed  Google Scholar 

  27. Harradine KA, Akhurst RJ (2006) Mutations of TGFβ signaling molecules in human disease. Ann Med 38:403–414

    CAS  PubMed  Google Scholar 

  28. Rowan CJ, Li W, Martirosyan H, Erwood S, Hu D, Kim YK, Sheybani-Deloui S, Mulder J, Blake J, Chen L, Rosenblum ND (2018) Hedgehog-GLI signaling in Foxd1-positive stromal cells promotes murine nephrogenesis via TGFβ signaling. Development 145:dev159947

    PubMed  Google Scholar 

  29. Meng XM, Huang XR, Xiao J, Chen HY, Zhong X, Chung ACK, Lan HY (2012) Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol 227:175–188

    CAS  PubMed  Google Scholar 

  30. Chung ACK, Lan HY (2013) Molecular mechanisms of TGF-β signaling in renal fibrosis. Curr Pathobiol Rep 1:291–299

    Google Scholar 

  31. Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003) TGF-β signal transduction and mesangial cell fibrogenesis. Am J Physiol Ren Physiol 284:243–252

    Google Scholar 

  32. Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    CAS  PubMed  Google Scholar 

  33. Heldin CH, Landström M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21:166–176

    CAS  PubMed  Google Scholar 

  34. Maeshima A, Nojima Y, Kojima I (2001) The role of the activin-follistatin system in the developmental and regeneration processes of the kidney. Cytokine Growth Factor Rev 12:289–298

    CAS  PubMed  Google Scholar 

  35. Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19:128–139

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Clark AT, Young RJ, Bertram JF (2001) In vitro studies on the roles of transforming growth factor-β1 in rat metanephric development. Kidney Int 59:1641–1653

    CAS  PubMed  Google Scholar 

  37. Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni JS (2001) TGFβ2, LIF and FGF2 cooperate to induce nephrogenesis. Development 128:1045–1057

    CAS  PubMed  Google Scholar 

  38. Cooley BC, Nevado J, Mellad J, Yang D, St. Hilaire C, Negro A, Fang F, Chen G, San H, Walts AD, Schwartzbeck RL, Taylor B, Lanzer JD, Wragg A, Elagha A, Beltran LE, Berry C, Feil R, Virmani R, Ladich E, Kovacic JC, Boehm M (2014) TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 6:227ra34

    PubMed  PubMed Central  Google Scholar 

  39. Combes AN, Phipson B, Lawlor KT, Dorison A, Patrick R, Zappia L, Harvey RP, Oshlack A, Little MH (2019) Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development 146:dev178673

    PubMed  Google Scholar 

  40. Ransick A, Lindström NO, Liu J, Zhu Q, Guo JJ, Alvarado GF, Kim AD, Black HG, Kim J, McMahon AP (2019) Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell 51:399–413

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vrljicak P, Myburgh D, Ryan AK, van Rooijen MA, Mummery CL, Gupta IR (2004) Smad expression during kidney development. Am J Physiol Ren Physiol 286:625–633

    Google Scholar 

  42. Itoh S, Itoh F, Goumans MJ, Dijke PT (2000) Signaling of transforming growth factor-β family members through Smad proteins. Eur J Biochem 267:6954–6967

    CAS  PubMed  Google Scholar 

  43. Blobe GC, Schiemann WP, Pepin MC, Beauchemin M, Moustakas M, Lodish HF, O’Connor-McCourt MD (2001) Functional roles for the cytoplasmic domain of the type III transforming growth factor β receptor in regulating transforming growth factor β signaling. J Biol Chem 276:24627–24637

    CAS  PubMed  Google Scholar 

  44. Villarreal MM, Kim SK, Barron L, Kodali R, Baardsnes J, Hinck CS, Krzysiak TC, Henen MA, Pakhomova O, Mendoza V, O’Connor-McCourt MD (2016) Binding properties of the transforming growth factor-β coreceptor betaglycan: proposed mechanism for potentiation of receptor complex assembly and signaling. Biochemistry 55:6880–6896

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kutz SM, Hordines J, McKeown-Longo PJ, Higgins PJ (2001) TGF-β1-induced PAI-1 gene expression requires MEK activity and cell-to-substrate adhesion. J Cell Sci 114:3905–3914

    CAS  PubMed  Google Scholar 

  46. Liang YY, Brunicardi FC, Lin X (2009) Smad3 mediates immediate early induction of Id1 by TGF-β. Cell Res 19:140–148

    CAS  PubMed  Google Scholar 

  47. Ling MT, Wang X, Tsao SW, Wong YC (2002) Down-regulation of Id-1 expression is associated with TGFβ1-induced growth arrest in prostate epithelial cells. Biochim Biophys Acta 1570:145–152

    CAS  PubMed  Google Scholar 

  48. Brodin G, Åhgren A, Ten Dijke P, Heldin CH, Heuchel R (2000) Efficient TGF-β induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J Biol Chem 275:29023–29030

    CAS  PubMed  Google Scholar 

  49. Afrakhte M, Morén A, Jossan S, Itoh S, Sampath K, Westermark B, Heldin CH, Heldin NE, ten Dijke P (1998) Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem Biophys Res Commun 249:505–511

    CAS  PubMed  Google Scholar 

  50. Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, Feeley R, Gimeno CJ, Woolf EA, Tayber O, Mays GG, Sampson BB, Schoen FJ, Gimbrone MA Jr, Falb D (1997) Vascular MADs: Two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci U S A 94:9314–9319

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, Wang XJ (2005) Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115:1714–1723

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Magella B, Adam M, Potter AS, Venkatasubramanian M, Chetal K, Hay SB, Salomonis N, Potter SS (2018) Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev Biol 434:36–47

    CAS  PubMed  Google Scholar 

  53. Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, Chen YC, Troyanskaya O, Spence JR, Kretzler M, Cebrián C (2018) Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 145:dev164038

    PubMed  PubMed Central  Google Scholar 

  54. Banas MC, Parks WT, Hudkins KL, Banas B, Holdren M, Iyoda M, Wietecha TA, Kowalewska J, Liu G, Alpers CE (2007) Localization of TGF-β signaling intermediates Smad2, 3, 4, and 7 in developing and mature human and mouse kidney. J Histochem Cytochem 55:275–285

    CAS  PubMed  Google Scholar 

  55. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A (1999) Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126:1631–1642

    CAS  PubMed  Google Scholar 

  56. Sirard C, De La Pompa JL, Elia A, Itie A, Mirstos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Make TW (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12:107–119

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621

    CAS  PubMed  Google Scholar 

  58. Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX (1998) Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A 95:9378–9383

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang X, Li C, Xu X, Deng C (1998) The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A 95:3667–3672

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35:43–56

    CAS  PubMed  Google Scholar 

  61. Dünker N, Krieglstein K (2002) Tgfβ2-/-Tgfβ3-/- double knockout mice display severe midline fusion defects and early embryonic lethality. Anat Embryol (Berl) 206:73–83

    Google Scholar 

  62. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216

    PubMed  PubMed Central  Google Scholar 

  63. Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254:116–130

    CAS  PubMed  Google Scholar 

  64. Wu MY, Hill CS (2009) TGF-β superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343

    CAS  PubMed  Google Scholar 

  65. Ritvos O, Tuuri T, Erämaa M, Sainio K, Hildén K, Saxén L, Gilbert SF (1995) Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 50:229–245

    CAS  PubMed  Google Scholar 

  66. Kulkarni AB, Ward JM, Yaswen L, Mackall CL, Bauer SR, Huh CG, Gress RE, Karlsson S (1995) Transforming growth factor-β1 null mice. An animal model for inflammatory disorders. Am J Pathol 146:264–275

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Boivin GP, O’Toole BA, Orsmby IE, Diebold RJ, Eis MJ, Doetschman T, Kier AB (1995) Onset and progression of pathological lesions in transforming growth factor-β1-deficient mice. Am J Pathol 146:276–288

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF–β3 indicates defects of epithelial–mesenchymal interaction. Nat Genet 11:415–421

    CAS  PubMed  Google Scholar 

  69. Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MWJ, Doetschman T (1995) Transforming growth factor–β3 is required for secondary palate fusion. Nat Genet 11:409–414

    CAS  PubMed  Google Scholar 

  70. Pelton RW, Saxena B, Jones M, Moses HL, Gold LI (1991) Immunohistochemical localization of TGFβ1, TGFβ2, and TGFβ3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    CAS  PubMed  Google Scholar 

  71. Sims-Lucas S, Caruana G, Dowling J, Kett MM, Bertram JF (2008) Augmented and accelerated nephrogenesis in TGF-β2 heterozygous mutant mice. Pediatr Res 63:607–612

    CAS  PubMed  Google Scholar 

  72. Short KM, Hodson MJ, Smyth IM (2010) Tomographic quantification of branching morphogenesis and renal development. Kidney Int 77:1132–1139

    PubMed  Google Scholar 

  73. Short K, Hodson M, Smyth I (2013) Spatial mapping and quantification of developmental branching morphogenesis. Development 140:471–478

    CAS  PubMed  Google Scholar 

  74. Piscione TD, Phan T, Rosenblum ND (2001) BMP7 controls collecting tubule cell proliferation and apoptosis via Smad1-dependent and -independent pathways. Am J Physiol Ren Physiol 280:19–33

    Google Scholar 

  75. Gewin L, Bulus N, Mernaugh G, Moeckel G, Harris RC, Moses HL, Pozzi A, Zent R (2010) TGF-β receptor deletion in the renal collecting system exacerbates fibrosis. J Am Soc Nephrol 21:1334–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gewin L (2019) The many talents of transforming growth factor-β in the kidney. Curr Opin Nephrol Hypertens 28:203–210

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/β-catenin signaling is required for ureteric branching. Dev Biol 317:83–94

    CAS  PubMed  Google Scholar 

  78. Liu A, Dardik A, Ballerimann BJ (1999) Neutralizing TGF-β1 antibody infusion in neonatal rat delays in vivo glomerular capillary formation. Kidney Int 56:1334–1348

    CAS  PubMed  Google Scholar 

  79. Doetschman T, Georgieva T, Li H, Reed TD, Grisham C, Friel J, Estabrook MA, Gard C, Sanford LP, Azhar M (2012) Generation of mice with a conditional allele for the transforming growth factor beta3 gene. Genesis 50:59–66

    CAS  PubMed  Google Scholar 

  80. Ishtiaq Ahmed AS, Bose GC, Huang L, Azhar M (2014) Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene. Genesis 52:817–826

    CAS  PubMed  Google Scholar 

  81. Sheybani-Deloui S, Chi L, Staite MV, Cain JE, Nieman BJ, Henkelman RM, Wainwright BJ, Potter SS, Bagli DJ, Lorenzo AJ, Rosenblum ND (2018) Activated Hedgehog-GLI signaling causes congenital ureteropelvic junction obstruction. J Am Soc Nephrol 29:532–544

    PubMed  Google Scholar 

  82. Van Der Ven AT, Connaughton DM, Ityel H, Mann N, Nakayama M, Chen J, Vivante A, Hwang DY, Schulz J, Braun DA, Schmidt JM, Schapiro D, Schneider R, Warejko JK, Daga A, Majmundar AJ, Tan W, Jobst-Schwan T, Hermle T, Widmeier E, Ashraf S, Amar A, Hoogstraaten CA, Hugo H, Kitzler TM, Kause F, Kolvenbach CM, Dai R, Spaneas L, Amann K, Stein DR, Baum MA, Somers MJG, Rodig NM, Ferguson MA, Traum AZ, Daouk GH, Bogdanović R, Stajić N, Soliman NA, Kari JA, El Desoky S, Fathy HM, Milosevic D, Al-Saffar M, Awad HS, Eid LA, Selvin A, Senguttuvan P, Sanna-Cherchi S, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Wilson MW, Mane SM, Lifton RP, Lee RS, Bauer SB, Lu W, Reutter HM, Tasic V, Shril S, Hildebrandt F (2018) Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 29:2348–2361

    PubMed  PubMed Central  Google Scholar 

  83. D’Cruz R, Stronks K, Rowan CJ, Rosenblum ND (2019) Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development. Pediatr Nephrol 35:725–731

    PubMed  Google Scholar 

Download references

Funding

The work was supported by a Canadian Institute of Health Research (CIHR) grant to NDR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Rosenblum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumbrava, M.G., Lacanlale, J.L., Rowan, C.J. et al. Transforming growth factor beta signaling functions during mammalian kidney development. Pediatr Nephrol 36, 1663–1672 (2021). https://doi.org/10.1007/s00467-020-04739-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04739-5

Keywords

Navigation