Skip to main content

Advertisement

Log in

Serum suPAR in patients with FSGS: trash or treasure?

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The urokinase-type plasminogen activator receptor (uPAR) has important functions in cell migration. uPAR can be shed from the cell membrane resulting in soluble uPAR (suPAR). Further cleavage gives rise to shorter fragments with largely unknown functions. Recent studies have demonstrated that both overexpression of uPAR on podocytes and the administration of suPAR cause proteinuria in mice. The common pathogenic mechanism involves the activation of podocyte β3-integrin. Increased activation of β3-integrin is also observed in patients with focal and segmental glomerulosclerosis (FSGS). These observations form the basis for the hypothesis that suPAR may be the circulating factor causing FSGS. A recent study fosters this idea by demonstrating increased suPAR levels in the serum of patients with FSGS and reporting an association with recurrence after transplantation and response to plasmapheresis. However, this study was heavily biased, and subsequent studies have given conflicting results. Although the experimental work is very suggestive, at present there is no proof that any known human suPAR fragment causes FSGS in humans. We therefore suggest that the measurement of suPAR using currently available assays has absolutely no value at the present time in decision-making in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schulman SL, Kaiser BA, Polinsky MS, Srinivasan R, Baluarte HJ (1988) Predicting the response to cytotoxic therapy for childhood nephrotic syndrome: superiority of response to corticosteroid therapy over histopathologic patterns. J Pediatr 113:996–1001

    Article  PubMed  CAS  Google Scholar 

  2. Haas M, Meehan SM, Karrison TG, Spargo BH (1997) Changing etiologies of unexplained adult nephrotic syndrome: a comparison of renal biopsy findings from 1976–1979 and 1995–1997. Am J Kidney Dis 30:621–631

    Article  PubMed  CAS  Google Scholar 

  3. Kriz W, Gretz N, Lemley KV (1998) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54:687–697

    Article  PubMed  CAS  Google Scholar 

  4. Deegens JK, Steenbergen EJ, Wetzels JF (2008) Review on diagnosis and treatment of focal segmental glomerulosclerosis. Neth J Med 66:3–12

    PubMed  CAS  Google Scholar 

  5. Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chonko AM, Artero M, Vincenti F (1996) Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 334:878–883

    Article  PubMed  CAS  Google Scholar 

  6. Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22:32–38

    PubMed  CAS  Google Scholar 

  7. Dantal J, Bigot E, Bogers W, Testa A, Kriaa F, Jacques Y, Hurault de Ligny B, Niaudet P, Charpentier B, Soulillou JP (1994) Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N Engl J Med 330:7–14

    Article  PubMed  CAS  Google Scholar 

  8. Chang JW, Pardo V, Sageshima J, Chen L, Tsai HL, Reiser J, Wei C, Ciancio G, Burke GW 3rd, Fornoni A (2012) Podocyte foot process effacement in postreperfusion allograft biopsies correlates with early recurrence of proteinuria in focal segmental glomerulosclerosis. Transplantation 93:1238–1244

    Article  PubMed  Google Scholar 

  9. Deegens JK, Andresdottir MB, Croockewit S, Wetzels JF (2004) Plasma exchange improves graft survival in patients with recurrent focal glomerulosclerosis after renal transplant. Transpl Int 17:151–157

    Article  PubMed  Google Scholar 

  10. Kemper MJ, Wolf G, Muller-Wiefel DE (2001) Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 344:386–387

    Article  PubMed  CAS  Google Scholar 

  11. Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A (2012) Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med 366:1648–1649

    Article  PubMed  CAS  Google Scholar 

  12. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, Maiguel D, Karumanchi SA, Yap HK, Saleem M, Zhang Q, Nikolic B, Chaudhuri A, Daftarian P, Salido E, Torres A, Salifu M, Sarwal MM, Schaefer F, Morath C, Schwenger V, Zeier M, Gupta V, Roth D, Rastaldi MP, Burke G, Ruiz P, Reiser J (2011) Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17:952–960

    Article  PubMed  CAS  Google Scholar 

  13. Solberg H, Ploug M, Hoyer-Hansen G, Nielsen BS, Lund LR (2001) The murine receptor for urokinase-type plasminogen activator is primarily expressed in tissues actively undergoing remodeling. J Histochem Cytochem 49:237–246

    Article  PubMed  CAS  Google Scholar 

  14. Furlan F, Galbiati C, Jorgensen NR, Jensen JE, Mrak E, Rubinacci A, Talotta F, Verde P, Blasi F (2007) Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. J Bone Miner Res 22:1387–1396

    Article  PubMed  CAS  Google Scholar 

  15. Fuhrman B (2012) The urokinase system in the pathogenesis of atherosclerosis. Atherosclerosis 222:8–14

    Article  PubMed  CAS  Google Scholar 

  16. Bianchi E, Ferrero E, Fazioli F, Mangili F, Wang J, Bender JR, Blasi F, Pardi R (1996) Integrin-dependent induction of functional urokinase receptors in primary T lymphocytes. J Clin Invest 98:1133–1141

    Article  PubMed  CAS  Google Scholar 

  17. Dekkers PE, ten Hove T, te Velde AA, van Deventer SJ, van Der Poll T (2000) Upregulation of monocyte urokinase plasminogen activator receptor during human endotoxemia. Infect Immun 68:2156–2160

    Article  PubMed  CAS  Google Scholar 

  18. Gyetko MR, Sitrin RG, Fuller JA, Todd RF 3rd, Petty H, Standiford TJ (1995) Function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leukoc Biol 58:533–538

    PubMed  CAS  Google Scholar 

  19. Tang CH, Wei Y (2008) The urokinase receptor and integrins in cancer progression. Cell Mol Life Sci 65:1916–1932

    Article  PubMed  CAS  Google Scholar 

  20. Behrendt N, Ronne E, Ploug M, Petri T, Lober D, Nielsen LS, Schleuning WD, Blasi F, Appella E, Dano K (1990) The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants. J Biol Chem 265:6453–6460

    PubMed  CAS  Google Scholar 

  21. Roldan AL, Cubellis MV, Masucci MT, Behrendt N, Lund LR, Dano K, Appella E, Blasi F (1990) Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 9:467–474

    PubMed  CAS  Google Scholar 

  22. Ploug M, Ronne E, Behrendt N, Jensen AL, Blasi F, Dano K (1991) Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem 266:1926–1933

    PubMed  CAS  Google Scholar 

  23. Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–943

    Article  PubMed  CAS  Google Scholar 

  24. Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA (1994) Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269:32380–32388

    PubMed  CAS  Google Scholar 

  25. Huai Q, Zhou A, Lin L, Mazar AP, Parry GC, Callahan J, Shaw DE, Furie B, Furie BC, Huang M (2008) Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat Struct Mol Biol 15:422–423

    Article  PubMed  CAS  Google Scholar 

  26. Sitrin RG, Johnson DR, Pan PM, Harsh DM, Huang J, Petty HR, Blackwood RA (2004) Lipid raft compartmentalization of urokinase receptor signaling in human neutrophils. Am J Respir Cell Mol Biol 30:233–241

    Article  PubMed  CAS  Google Scholar 

  27. Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11:23–36

    Article  PubMed  CAS  Google Scholar 

  28. Springer TA, Dustin ML (2012) Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 24:107–115

    Article  PubMed  CAS  Google Scholar 

  29. Madsen CD, Ferraris GM, Andolfo A, Cunningham O, Sidenius N (2007) uPAR-induced cell adhesion and migration: vitronectin provides the key. J Cell Biol 177:927–939

    Article  PubMed  CAS  Google Scholar 

  30. Degryse B, Resnati M, Czekay RP, Loskutoff DJ, Blasi F (2005) Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem 280:24792–24803

    Article  PubMed  CAS  Google Scholar 

  31. Sidenius N, Sier CF, Blasi F (2000) Shedding and cleavage of the urokinase receptor (uPAR): identification and characterisation of uPAR fragments in vitro and in vivo. FEBS Lett 475:52–56

    Article  PubMed  CAS  Google Scholar 

  32. Hoyer-Hansen G, Behrendt N, Ploug M, Dano K, Preissner KT (1997) The intact urokinase receptor is required for efficient vitronectin binding: receptor cleavage prevents ligand interaction. FEBS Lett 420:79–85

    Article  PubMed  CAS  Google Scholar 

  33. Fazioli F, Resnati M, Sidenius N, Higashimoto Y, Appella E, Blasi F (1997) A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J 16:7279–7286

    Article  PubMed  CAS  Google Scholar 

  34. Furlan F, Orlando S, Laudanna C, Resnati M, Basso V, Blasi F, Mondino A (2004) The soluble D2D3(88–274) fragment of the urokinase receptor inhibits monocyte chemotaxis and integrin-dependent cell adhesion. J Cell Sci 117:2909–2916

    Article  PubMed  CAS  Google Scholar 

  35. Resnati M, Pallavicini I, Daverio R, Sidenius N, Bonini P, Blasi F (2006) Specific immunofluorimetric assay detecting the chemotactic epitope of the urokinase receptor (uPAR). J Immunol Methods 308:192–202

    Article  PubMed  CAS  Google Scholar 

  36. Thuno M, Macho B, Eugen-Olsen J (2009) suPAR: the molecular crystal ball. Dis Markers 27:157–172

    PubMed  Google Scholar 

  37. Xu Y, Berrou J, Chen X, Fouqueray B, Callard P, Sraer JD, Rondeau E (2001) Induction of urokinase receptor expression in nephrotoxic nephritis. Exp Nephrol 9:397–404

    Article  PubMed  CAS  Google Scholar 

  38. Wei C, Moller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63

    Article  PubMed  CAS  Google Scholar 

  39. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547

    PubMed  CAS  Google Scholar 

  40. Mayer G, Boileau G, Bendayan M (2003) Furin interacts with proMT1-MMP and integrin alphaV at specialized domains of renal cell plasma membrane. J Cell Sci 116:1763–1773

    Article  PubMed  CAS  Google Scholar 

  41. Zhang B, Shi W, Ma J, Sloan A, Faul C, Wei C, Reiser J, Yang Y, Liu S, Wang W (2012) The calcineurin-NFAT pathway allows for urokinase receptor-mediated beta3 integrin signaling to cause podocyte injury. J Mol Med (Berl) 90:1407–1420

    Article  CAS  Google Scholar 

  42. Kemeny E, Mihatsch MJ, Durmuller U, Gudat F (1995) Podocytes loose their adhesive phenotype in focal segmental glomerulosclerosis. Clin Nephrol 43:71–83

    PubMed  CAS  Google Scholar 

  43. Sharma M, Sharma R, McCarthy ET, Savin VJ (1999) “The FSGS factor:” enrichment and in vivo effect of activity from focal segmental glomerulosclerosis plasma. J Am Soc Nephrol 10:552–561

    PubMed  CAS  Google Scholar 

  44. Solberg H, Lober D, Eriksen J, Ploug M, Ronne E, Behrendt N, Dano K, Hoyer-Hansen G (1992) Identification and characterization of the murine cell surface receptor for the urokinase-type plasminogen activator. Eur J Biochem 205:451–458

    Article  PubMed  CAS  Google Scholar 

  45. Kristensen P, Eriksen J, Blasi F, Dano K (1991) Two alternatively spliced mouse urokinase receptor mRNAs with different histological localization in the gastrointestinal tract. J Cell Biol 115:1763–1771

    Article  PubMed  CAS  Google Scholar 

  46. Bitzan M, Babayeva S, Vasudevan A, Goodyer P, Torban E (2012) TNFalpha pathway blockade ameliorates toxic effects of FSGS plasma on podocyte cytoskeleton and beta3 integrin activation. Pediatr Nephrol 27:2217–2226

    Article  PubMed  Google Scholar 

  47. Piguet PF, Vesin C, Donati Y, Tacchini-Cottier F, Belin D, Barazzone C (1999) Urokinase receptor (uPAR, CD87) is a platelet receptor important for kinetics and TNF-induced endothelial adhesion in mice. Circulation 99:3315–3321

    Article  PubMed  CAS  Google Scholar 

  48. Gustafsson A, Ajeti V, Ljunggren L (2011) Detection of suPAR in the saliva of healthy young adults: comparison with plasma levels. Biomark Insights 6:119–125

    Article  PubMed  CAS  Google Scholar 

  49. Cobos E, Jumper C, Lox C (2003) Pretreatment determination of the serum urokinase plasminogen activator and its soluble receptor in advanced small-cell lung cancer or non-small-cell lung cancer. Clin Appl Thromb Hemost 9:241–246

    Article  PubMed  CAS  Google Scholar 

  50. Giamarellos-Bourboulis EJ, Norrby-Teglund A, Mylona V, Savva A, Tsangaris I, Dimopoulou I, Mouktaroudi M, Raftogiannis M, Georgitsi M, Linner A, Adamis G, Antonopoulou A, Apostolidou E, Chrisofos M, Katsenos C, Koutelidakis I, Kotzampassi K, Koratzanis G, Koupetori M, Kritselis I, Lymberopoulou K, Mandragos K, Marioli A, Sunden-Cullberg J, Mega A, Prekates A, Routsi C, Gogos C, Treutiger CJ, Armaganidis A, Dimopoulos G (2012) Risk assessment in sepsis: a new prognostication rule by APACHE II score and serum soluble urokinase plasminogen activator receptor. Crit Care 16:R149

    Article  PubMed  Google Scholar 

  51. Zimmermann HW, Koch A, Seidler S, Trautwein C, Tacke F (2012) Circulating soluble urokinase plasminogen activator is elevated in patients with chronic liver disease, discriminates stage and aetiology of cirrhosis and predicts prognosis. Liver Int 32:500–509

    PubMed  CAS  Google Scholar 

  52. Edsfeldt A, Nitulescu M, Grufman H, Gronberg C, Persson A, Nilsson M, Persson M, Bjorkbacka H, Goncalves I (2012) Soluble urokinase plasminogen activator receptor is associated with inflammation in the vulnerable human atherosclerotic plaque. Stroke 43:3305–3312

    Article  PubMed  CAS  Google Scholar 

  53. Toldi G, Szalay B, Beko G, Bocskai M, Deak M, Kovacs L, Vasarhelyi B, Balog A (2012) Plasma soluble urokinase plasminogen activator receptor (suPAR) levels in systemic lupus erythematosus. Biomarkers 17:758–763

    Article  PubMed  CAS  Google Scholar 

  54. Ostrowski SR, Piironen T, Hoyer-Hansen G, Gerstoft J, Pedersen BK, Ullum H (2005) High plasma levels of intact and cleaved soluble urokinase receptor reflect immune activation and are independent predictors of mortality in HIV-1-infected patients. J Acquir Immune Defic Syndr 39:23–31

    Article  PubMed  CAS  Google Scholar 

  55. Almasi CE, Christensen IJ, Hoyer-Hansen G, Dano K, Pappot H, Dienemann H, Muley T (2011) Urokinase receptor forms in serum from non-small cell lung cancer patients: relation to prognosis. Lung Cancer 74:510–515

    Article  PubMed  Google Scholar 

  56. Thurison T, Lomholt AF, Rasch MG, Lund IK, Nielsen HJ, Christensen IJ, Hoyer-Hansen G (2010) A new assay for measurement of the liberated domain I of the urokinase receptor in plasma improves the prediction of survival in colorectal cancer. Clin Chem 56:1636–1640

    Article  PubMed  CAS  Google Scholar 

  57. Pawlak K, Buraczewska-Buczko A, Mysliwiec M, Pawlak D (2010) Hyperfibrinolysis, uPA/suPAR system, kynurenines, and the prevalence of cardiovascular disease in patients with chronic renal failure on conservative treatment. Am J Med Sci 339:5–9

    Article  PubMed  Google Scholar 

  58. Lyngbaek S, Marott JL, Sehestedt T, Hansen TW, Olsen MH, Andersen O, Linneberg A, Haugaard SB, Eugen-Olsen J, Hansen PR, Jeppesen J (2012) Cardiovascular risk prediction in the general population with use of suPAR, CRP, and Framingham risk score. Int J Cardiol. doi:10.1016/j.bbr.2011.03.031

  59. Liu G, Huang J, Zhao M (2012) Plasma soluble urokinase levels were elevated in patients with primary focal segmental glomerulosclerosis and were associated with renal damage [abstract]. J Am Soc Nephrol 23:59A

    Article  Google Scholar 

  60. Chen J, Lin Y, Lin W, Shu K, Cheng C, Chen H, Wu C, Yang C, Tseng T (2012) Role of serum level of soluble urokinase receptor in various biopsy-proven kidney diseases and staging effect in diabetic nephropathy [abstract]. J Am Soc Nephrol 23:726A

    Google Scholar 

  61. Maas RJ, Wetzels JF, Deegens JK (2012) Serum-soluble urokinase receptor concentration in primary FSGS. Kidney Int 81:1043–1044

    Article  PubMed  CAS  Google Scholar 

  62. Pawlak K, Ulazka B, Mysliwiec M, Pawlak D (2012) Vascular endothelial growth factor and uPA/suPAR system in early and advanced chronic kidney disease patients: a new link between angiogenesis and hyperfibrinolysis? Transl Res 160:346–354

    Article  PubMed  CAS  Google Scholar 

  63. Roelofs JJ, Rouschop KM, Teske GJ, Claessen N, Weening JJ, van der Poll T, Florquin S (2006) The urokinase plasminogen activator receptor is crucially involved in host defense during acute pyelonephritis. Kidney Int 70:1942–1947

    PubMed  CAS  Google Scholar 

  64. Deegens JK, Dijkman HB, Borm GF, Steenbergen EJ, van den Berg JG, Weening JJ, Wetzels JF (2008) Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int 74:1568–1576

    Article  PubMed  Google Scholar 

  65. Bock ME, Price HE, Langman CB (2012) Circulating serum soluble urokinase receptor (suPAR) is an unlikely cause of childhood focal segmental glomerulosclerosis [abstract]. J Am Soc Nephrol 23:726A

    Google Scholar 

  66. Chan YC, Yeo WS, Wei C, Biswas SK, Yap HK (2012) High suPAR levels in FSGS patients is associated with decreased Treg cells [abstract]. J Am Soc Nephrol 23:484A

    Article  Google Scholar 

  67. Franco-Palacios CR, Lieske JC, Wadei H, Rule AD, Voskoboev N, Stegall MD, Cosio FG, Amer H (2012) Soluble urokinase receptor (suPAR) in the serum and urine of patients with focal and segmental glomerulosclerosis (FSGS) and IgA nephropathy [abstract]. J Am Soc Nephrol 23:64A

    Google Scholar 

  68. Wei C, Trachtman H, Li J, Dong C, Friedman AL, Gassman JJ, McMahan JL, Radeva M, Heil KM, Trautmann A, Anarat A, Emre S, Ghiggeri GM, Ozaltin F, Haffner D, Gipson DS, Kaskel F, Fischer DC, Schaefer F, Reiser J, for the P, Consortia FCS, (2012) Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol 23:2051–2059

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger J. H. Maas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 64.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maas, R.J.H., Deegens, J.K.J. & Wetzels, J.F.M. Serum suPAR in patients with FSGS: trash or treasure?. Pediatr Nephrol 28, 1041–1048 (2013). https://doi.org/10.1007/s00467-013-2452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2452-5

Keywords

Navigation